STUDIES ON THE CARBON CATABOLITE REPRESSION IN LACTIC ACID BACTERIA ISOLATED FROM WINE
CARBON CATABOLITE REPRESSION IN LACTIC ACID BACTERIA
DOI:
https://doi.org/10.47743/jemb-2024-183Keywords:
carbohydrate metabolism, Lactobacillus plantarum, malolactic fermentation, Oenococcus oeni, wineAbstract
In wine, lactic acid bacteria (LAB) are responsible for the bioconversion of malic acid to lactic acid, malolactic fermentation that mainly aims at reducing wine acidity. Two LAB strains isolated from the red wine microbiota (Oenococcus oeni 13-7 and Lactobacillus plantarum R1-1), were tested for their ability to exhibit the carbon catabolite repression (CCR) mechanism, that allows the rapid use of certain carbohydrates, over other carbon sources. Bacterial cells were inoculated in 0.1 M glycine buffer (pH 3.5), incubated at 30°C, with different carbohydrates (45 mM) and malic acid (45 mM). For both strains, the presence of glucose significantly inhibited malic acid metabolization (−60%), a similar effect being observed for galactose, mannose and maltose. The highest rate of malic acid conversion was shown in fructose/malate medium. Obtained results showed that malolactic strains can control the utilization of carbon sources via CCR, further studies being necessary to elucidate the mechanisms underlying this process.
References
Capozzi V, Tufariello M, De Simone N, Fragasso M, Grieco F. 2021. Biodiversity of oenological lactic acid bacteria: species-and strain-dependent plus/minus effects on wine quality and safety. Fermentation. 7:24. doi:10.3390/fermentation7010024. [accessed 2022 Feb 18]. https://doi.org/10.3390/fermentation7010024.
Cavin JF, Prevost H, Lin J, Schmitt P, Divies C. 1989. Medium for screening Leuconostoc oenos strains defective in malolactic fermentation. App Environ Microbiol. 55(3):751-753. doi: 10.1128/aem.55.3.751-753.1989 [accessed 2022 Aug 11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC184191/.
Cibrario A, Peanne C, Lailheugue M, Campbell-Sills H, Dols-Lafargue M. 2016. Carbohydrate metabolism in Oenococcus oeni: a genomic insight. BMC Genomics, 17(1):984. doi: 10.1186/s12864-016-3338-2 [accessed 2022 May 10]. https://pubmed.ncbi.nlm.nih.gov/27905883/.
Coelho MC, Malcata FX, Silva CCG. 2022. Lactic acid bacteria in raw-milk cheeses: from starter cultures to probiotic functions. Foods. 11(15):2276. doi:10.3390/foods11152276. [accessed 2023 Jan 20]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368153/.
De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB. 2009. Bergey’s manual of systematic bacteriology. Vol. 3: The Firmicutes. New York: Springer.
Déléris-Bou M, Krieger-Weber S. 2014. Mastering malolactic fermentation - how to manage the nutrition of wine bacteria and minimise the effect of inhibitors. WynLand. 2014:103-111. https://www.lallemandwine.com/wp-content/uploads/2016/04/Mastering-malolactic-fermentation-how-to-manage-the-nutrition-S.-krieger-M.-Bou.pdf [accessed 2022 Apr 2].
Filimon VR, Bunea C-I, Nechita A, Bora FD, Dunca SI, Mocan A, Filimon RM. 2022. New malolactic bacteria strains isolated from wine microbiota. Characterisation and technological properties. Fermentation. 8(1):31. doi: 10.3390/fermentation8010031 [accessed 2023 Apr 19]. https://doi.org/10.3390/fermentation8010031.
Filimon VR. 2023. Fermentația malolactică a vinurilor. Agenți biologici implicați, izolare, selecție și caracterizare [Malolactic fermentation of wines. Biological agents involved, isolation, selection and characterization]. Iasi: PIM. ISBN 978-606-137-800-5.
Firme MP, Leitão MC, San Romão MV. 1994. The metabolism of sugar and malic acid by Leuconostoc oenos: effect of malic acid, pH and aeration conditions. J App Microbiol. 76(2):173-181. doi:10.1111/j.1365-2672.1994.tb01613.x [accessed 2023 Mar 7]. https://doi.org/10.1111/j.1365-2672.1994.tb01613.x.
Henick-Kling T, Acree TE, Krieger SA, Laurent MH. 1993. Sensory aspects of malolactic fermentation. In Creina SS, editor. Proceedings of the eighth Australian wine industry technical conference. Melbourne: Australia. p.148-152.
Izquierdo PM, Garcia E, Martinez J, Chacon JL. 2004. Selection of lactic bacteria to induce malolactic fermentation in red wine of cv. Cencibel. Vitis. 43(3):149-153. doi:10.5073/vitis.2004.43.149-153 [accessed 2021 Nov 10]. https://doi.org/10.5073/vitis.2004.43.149-153.
Krieger S. 2005. The nutritional requirements of malolactic bacteria. In Morenzoni R, editor. Malolactic fermentation in wine. Montréal: Lallemand Inc. p. 8.1-8.6.
Lerm E, Engelbrecht L, Du Toit M. 2010. Malolactic fermentation: the ABC’s of MLF. S Afr J Enol Vitic. 31:186–212. doi:10.21548/31-2-1417 [accessed 2021 Nov 10]. https://doi.org/10.21548/31-2-1417.
Maicas S, Gonzalez-Cabo P, Ferrer S, Pardo I. 1999. Production of Oenococcus oeni biomass to induce malolactic fermentationin wine by control of pH and substrate addition. Biotechnol. Lett. 21:349-353. doi:10.1023/A:1005498925733 [accessed 2021 Nov 10]. https://doi.org/10.1023/A:1005498925733.
Miranda M, Ramos A, Veiga-Da-Cunha M, Loureiro-Dias MC, Santos H. 1997. Biochemical basis for glucose-induced inhibition of malolactic fermentation in Leuconostoc oenos. J Bacteriol. 179(17):5347-5354. doi: 10.1128/jb.179.17.5347-5354.1997 [accessed 2022 May 11]. https://doi.org/10.1128/jb.179.17.5347-5354.1997.
Nair A, Sarma SJ. 2021. The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiol Res. 251:126831. doi: 10.1016/j.micres.2021.126831 [accessed 2022 Nov 11]. https://pubmed.ncbi.nlm.nih.gov/34325194/.
Nonomura H. 1983. Lactobacillus yamanashiensis subsp. yamanashiensis and Lactobacillus yamanashiensis subsp. mali sp. and subsp. nov., nom. rev. Int J Syst Evol Micr, 33(2):406-407. doi:10.1099/00207713-33-2-406 [accessed 2022 May 14]. https://doi.org/10.1099/00207713-33-2-406.
Plumbridge J. 2009. Regulation of carbon assimilation in bacteria In: Schaechter M, editor. The encyclopedia of microbiology - Physiology, p. 375-394. Oxford: Academic Press.
Reidler F. 1967. Étude microbiologique des bactéries de la fermentation malolactique. Connaiss. Vigne Vin. 1:73-91. doi:10.20870/oeno-one.1967.1.3.1924 [accessed 2022 May 14]. https://doi.org/10.20870/oeno-one.1967.1.3.1924.
Salou P, Leroy MJ, Goma G, Pareilleux A. 1991. Influence of pH and malate-glucose ratio on the growth kinetics of Leuconostoc oenos. Appl Microbiol Biotechnol. 36: 87-91. doi:10.1007/BF00164704 [accessed 2023 Mar 7]. https://doi.org/10.1007/BF00164704.
Vinuselvi P, Kim MK, Lee SK, Ghim C-M. 2012. Rewiring carbon catabolite repression for microbial cell factory. BMB Reports. 45(2):59-70. doi:10.5483/BMBRep.2012.45.2.59 [accessed 2023 Mar 15]. http://dx.doi.org/10.5483/BMBRep.2012.45.2.59.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Vasile Razvan Filimon, Rodica Paşa, Roxana Mihaela Filimon, Simona Isabela Dunca

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. The journal allows readers to read, download, copy, distribute, print, search, link to the full texts or use the articles for any other lawful purpose.
The authors are the sole copyright owners of the published articles. The articles are distributed under the CC BY 4.0 license to the readers.
The readers are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — you may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.






