ISOLATION AND MOLECULAR CHARACTERIZATION OF RHIZOBIAL STRAINS ISOLATED FROM SOYBEAN NODULES IN LIMPOPO PROVINCE, SOUTH AFRICA
Characterization of rhizobial strains from soybean root nodules
DOI:
https://doi.org/10.47743/jemb-2025-211Keywords:
soybean, PGPB, MPN, diversity, abundance,microbiomeAbstract
Limited nitrogen in the soil is a major constraint to sustainable crop production in most developing countries including South Africa. Soybean productivity in South Africa is limited by drought, poor soil fertility, and the ineffectiveness or unavailability of native strains. Most soil in South Africa contains low or ineffective rhizobium strains for biological nitrogen fixation in legume crops. The study aimed to isolate and characterize compatible rhizobial strains for soybeans in response to soil moisture conservation technologies and Bradyrhizobium japonicum inoculation in Limpopo province, South Africa. The study used a phylogenetic analysis of 21 bacteria' 16S rRNA gene sequences isolated from soybean root nodules in the Limpopo province. Experiments were conducted at Syferkuil farm and Lebopo sites in Limpopo province. DNA was extracted to perform PCR amplification of the 16S ribosomal RNA using primer fD1 and rD1. Sequencing was done at Inqaba Biotec, Pretoria, and edited using Bioedit and Mega X programs. A total of 21 bacterial isolates were isolated from soybean root nodules. The isolated strains from Syferkuil and Lebopo sites had both medium-growing and fast-growing strains; however, they were dominated by fast-growing strains. Phylogenetic results showed four categories of bacterial genera: Agrobacterium, Bradyrhizobium, Bacillus, and Rhizobium. Application of local rhizobium strains and efficient strains could enhance productivity and contribute to the low input cost of soybean production in Limpopo province
References
Abd El-Ghany EM, Eissa RA, Fahmi AI, Nagaty HH, El-Zanaty AM. 2020. Genetic characterization of some rhizobial isolates from various legumes. Journal of Biotechnology, Computational Biology and Bionanotechnology.101(3):179–191.DOI: https://doi.org/10.5114/bta.2020.97877
Aguirre J. 2023. The Kjeldahl Method. In: The Kjeldahl Method: 140 Years. Springer, Cham. https://doi.org/10.1007/978-3-031-31458.
Akley EK, Rice CW, Ahiabor BDK, Prasad PAV. 2023. Bradyrhizobium inoculants impact on promiscuous nodulating soybeans cultivars in Ghana’s farming systems. Agronomy Journal. 115:1097–1113. https://doi.org/10.1002/agj2.21273.
AL-Shwaiman HA, Shahid M, Elgorbana AM, Siddique KHM, Syeda A. 2022. Beijerinckia fluminensis BFC-33, a novel multi-stress-tolerant soil bacterium: Deciphering the stress amelioration, phytopathogenic inhibition and growth promotion in Triticum aestivum (L.). Chemosphere. 295:1-16. DOI: 10.1016/j.chemosphere.2022.133843
Ayuba J, Jaiswal SK, Mohammed M, Denwar NN, Dakora FD. 2021. Adaptability of local conditions and phylogenetic differentiation of microsymbionts of TGx soybean genotypes in the semi-arid environments of Ghana and South Africa. Systematic and Applied Microbiology. 44: 1-11. https://doi.org/10.1016/j.syapm.2021.126264
Basediya AL, Mishra S, Gupta R, Kumar P, Basediya SS. 2018. Performance of Ridge and Furrow System on the Growth and Yield Attribution of Soybean in Barwani District of M.P. India. International Journal of Current Microbiology and Applied Sciences. 7(8):499-505. https://doi.org/10.20546/ijcmas.2018.708.055.
Chibeba AM, Kyei-Boahenc S, de Fátima Guimarãesa M, Nogueirab MA, Hungria M. 2017. Isolation, characterization, and selection of indigenous Bradyrhizobium strain with outstanding symbiotic performance to increase soybean yields in Mozambique. Agriculture, Ecosystems & Environment. 246:291-305. DOI: 10.1016/j.agee.2017.06.017
Delamuta JRM, Ribeiro RA, Menna P, Villamil Bangel E, Hungria M. 2012. Multilocus Sequence Analysis (MLSA) of Bradyrhizobium Strains: Revealing High Diversity of Tropical Diazotrophic Symbiotic Bacteria. Brazilian Journal of Microbiology. 43: 698-710. https://doi.org/10.1590/S1517-83822012000200035
Delamuta JRM, Scherer AJ, Ribeiro RA, Hungria M. 2020. Genetic diversity of Agrobacterium species isolated from nodules of common bean and soybean in Brazil, Mexico, Ecuador and Mozambique, and description of the new species Agrobacterium fabacearum sp. nov. The International Journal of Systematic and Evolutionary Microbiology. 70:4233–4244. DOI: 10.1099/ijsem.0.004278
Diwakar AK, Yadav J, Patel K, Prajapati SK, Vandana VJ, Soni RL. 2023. Study of Physico-chemical and Nutrient Status of the Soil in Chiraigaon Block, Varanasi District, Uttar Pradesh, India. International Journal of Plant & Soil Science. 35(6):77-84. DOI:10.9734/ijpss/2023/v35i62841
Efstathiadou E, Ntatsi G, Savvas D, Tampakaki AP. 2021. Genetic characterization at the species and symbiovar level of indigenous rhizobial isolates nodulating Phaseolus vulgaris in Greece. Scientific Reports. 11: 1-15. https://doi.org/10.1038/s41598-021-88051-8.
Engelbrecht G, Claassens S, Mienie CMS, Fourie H. 2020. South Africa: An Important Soybean Producer in Sub-Saharan Africa and the Quest for Managing Nematode Pests of the Crop. Agriculture. 10: 1-19. https://doi.org/10.3390/agriculture10060242
Fukuda K, Ogawa M, Taniguchi H, Saito M. 2016. Molecular Approaches to Studying Microbial Communities: Targeting the 16S Ribosomal RNA Gene. International Journal of Occupational and Environmental Health. 38(3):223-232. DOI:10.7888/juoeh.38.223.
Guanzon IM, Mason MLT, Juico, PP, Fiegalan FT. 2023. Isolation of three genera of microorganisms in lahar-laden soils of Sta. Rita, Pampanga, Philippines through the 16s rRNA gene sequence analysis. Acta Agriculturae Scandinavica. Section B. Soil and Plant Science. 73(1):1-12. https://doi.org/10.1080/09064710.2022.2163281.
Jaiswal SK, Dakora FD. 2019. Widespread distribution of highly adapted Bradyrhizobium species nodulating diverse legumes in Africa. Frontiers in Microbiology. 310:1–16. doi: 10.3389/fmicb.2019.00310
Klogo P, Ofori, JK, Amaglo H. 2015. Soybean (Glycine max (L) Merill) promiscuity reaction to indigenous bradyrhizobia inoculation in some Ghanaian soils. International Journal of Scientific and Technology Research. 4:306–313. https://doi.org/10.1016/j.apsoil.2005.06.008.
Korir H, Mungai N, Thuita WM, Masso C. 2017. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in Plant Science. 8:1-10. https://doi.org/10.3389/fpls.2017.00141
Kumar S, Stecher G, Li, M, Knyaz, C, Tambura K. 2018. Mega X: molecular evolutionary analysis across computing platforms. Molecular Biology and Evolution. 35:1547-1549. doi: 10.1093/molbev/msy096
Mahdhi M, Houidheg N, Mahmoudi N, Msadek A, Rejilli M, Mars M. 2016. Characterization of rhizobial bacteria nodulating astragalus Corrugatus and Hippocrepis areolata in Tunisian soils. Polish Journal of Microbiology. 65:331-339. DOI: 10.5604/17331331.1215612
Mak-Mensah E, Obour PB, Wang Q. 2021. Influence of tied-ridge-furrow with inorganic fertilizer on grain yield across semiarid regions of Asia and Africa: A meta-analysis. Peer Journal. 9:1-20. DOI: 10.7717/peerj.11904
Martens M, Dawyndt P, Coopman R, Gillis M, de Vos, P, Willems A. 2008. Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). International Journal of Systemic and Evolutionary Microbiology. 58: 200–214.
Mason MLT, Matsuura S, Domingo AL, Yamamoto A, Shiro S, Sameshima-Saito R, Saeki Y. 2017. Genetic diversity of indigenous soybean-nodulating Bradyrhizobium elkanii from southern Japan and Nueva Ecija, Philippines. Plant Soil. 417: 349–362
Matcham EG, Ruark MD, Stoltenberg DE, Conley SP. 2023. Comparison of Bray-1 and Mehlich-3 extraction of P and K in Wisconsin silt loam soils. Soil Science Society of America Journal. 87(4):999-1002. https://doi.org/10.1002/saj2.20557
Mayhood P, Mirza BS. 2021. Soybean root nodule and rhizosphere microbiome: distribution of rhizobial and nonrhizobial endophytes. Applied and Environmental Microbiology Journal. 87:1–14. DOI: https://doi.org/10.1128/AEM.02884-20.
Mayhood P, Mirza BS. 2021. Soybean root nodule and rhizosphere microbiome: distribution of rhizobial and nonrhizobial endophytes. Applied and Environment Microbiology. 87: 20. https://doi.org/10.1128/AEM.02884-20
Mayhood PM. 2020. "Investigation of the Individual Soybean Root Nodule Microbiome". MSU Graduate Theses. 3482.
Mburu SW, Koskey G, Njeru EM, Ombori O, Maingi J, Kimiti JM. 2022. Genetic and phenotypic diversity of microsymbionts nodulating promiscuous soybeans from different agro-climatic conditions. Journal of Genetic Engineering and Biotechnology. 20:1-15. https://doi.org/10.1186/s43141-022-00386-5
Mburu SW, Koskey G, Njeru EM, Ombori O, Maingi J, Kimiti JM. 2022. Genetic and phenotypic diversity of microsymbionts nodulating promiscuous soybeans from diferent agro-climatic conditions. Journal of Genetic Engineering and Biotechnology. 20: 109 https://doi.org/10.1186/s43141-022-00386-5.
Medeiros C, Pereira GA, de Freitas JDS, de Oliveira Filho OBQ, do Valle JS, Linde GA, Paccola-Meirelles L D, Colauto NM, Barcellos FG. 2020. Gene characterization of Bradyrhizobium spp. strains contrasting in biological nitrogen fixation efficiency in soybean. Semina-Ciencias Agrarias. 41(6):3067-3080. DOI:10.5433/1679-0359.2020v41n6Supl2p3067
Mohlala MP. 2021. Evaluation of grain yield and canning quality traits of cowpea genotypes. MINI-Dissertation Submitted in (partial) fulfilment of the requirements for the degree of MSc in Agronomy in the Faculty of Science and Agriculture (School of Agriculture and Environmental Sciences) at the University of Limpopo.
Mortuza MF, Djedidi S, Ito T, Agake S, Sekimoto H, Yokoyama T, Okazaki S, Ohkama-Ohtsu N. 2022. Genetic and Physiological Characterization of Soybean-Nodule-Derived Isolates from Bangladeshi Soils Revealed Diverse Array of Bacteria with Potential Bradyrhizobia for Biofertilizers. Microorganisms.10: 2282. https://doi.org/10.3390/ microorganisms10112282
Muchhadiya PM, Bhatt SB, Umaretiya VR, Parakhia MV, Kandoliya UK, Gajera HP, Padhiyar SM, Joshi KB. 2024. Genetic characterization and diversity of nitrogen fixing Rhizobium spp. isolated from root nodules of legumes. International Journal of Advanced Biochemistry Research. 8(8): 301-311.
Mustapha AA, Abdu N, Oyinlola EY, Nuhu AA. 2023. Evaluating Different Methods of Organic Carbon Estimation on Nigerian Savannah Soils. Journal of Soil Science and Plant Nutrition. 23:790–800. DOI:10.1007/s42729-022-01082-6
Naamala J, Jaiswal SK, Dakora FD. 2016. Microsymbiont diversity and phylogeny of native bradyrhizobial associated with soybean (Glycine max L. Merr.) nodulation in South African soils. Systematic and Applied Microbiology. 39:336-344. https://doi.org/10.1016/j.syapm.2016.05.009
Nakei MD, Venkataramana PB, Ndakidemi PA. 2022. Soybean-Nodulating Rhizobia: Ecology, Characterization, Diversity, and Growth Promoting Functions. Frontiers in Sustainable Food Systems. 6:1-24. DOI:10.3389/fsufs.2022.824444.
Ogola JBO, Macil, PJ, Ramabulana E, Odhiambo JJO.2020. Native rhizobium strains are lacking in some agricultural soils in NE South Africa. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science. 70(5): 406-408. DOI: 10.1080/09064710.2020.1754453
Puozaa DK, Jaiswal SK, Dakora FD. 2019. Phylogeny and distribution of Bradyrhizobium symbionts nodulating cowpea (Vigna unguiculata L. Walp) and their association with the physicochemical properties of acidic African soils. Systematic and Applied Microbiology. 42:403–414. DOI: 10.1016/j.syapm.2019.02.004
Rodríguez CV, López LV, Olivares JGG, Langarica HGR. 2024. Identification of Rhizobia Isolated from Nodules of Mexican Commercial Soybean Varieties. American Journal of Plant Sciences. 15: 29-45. https://doi.org/10.4236/ajps.2024.151003
Rosariastuti R, Sudadi FK. 2022. Potential of rhizobium sp. i3 and agrobacterium sp. i37 in the formation of root nodules and stimulating the growth of Arachis hypogaea L. Engenharia Agrícola. 42(5):1-8. Doi: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v42n5e20200209/2022
Sansanwal R, Ahlawat U, Batra P, Wati L, Kaushik P. 2023. Biochemical and Molecular Characterization of Endophytic Bacteria from Root Nodules of Mungbean (Vigna radiata). Annals of biology. 39(1):7-10.
Sbabou L, Idir Y, Bruneel O, Le Quéré A, Aurag J, Béna G, Filaliand Filali-Maltouf A. 2016. Characterization of Root-Nodule Bacteria Isolated from Hedysarum spinosissimum L, Growing in Mining Sites of Northeastern Region of Morocco. Microbiology & Infectious Diseases. 1-9. DOI: 10.15226/sojmid/4/3/00156
Shakirov ZS, Egamberdieva MI, Abdullaev AK, Yakubov IT, Mamanazarova KS. 2023. Isolation of Soybean Nodule Bacteria and Nodule Formation in Uzbekistan Soybean Varieties. Agricultural science. 14:129-144.
Subramanian P, Kim K, Krishnamoorthy R, Sundaram S, Sa T. 2015. Endophytic bacteria improve nodule function and plant nitrogen in soybean on coinoculation with Bradyrhizobium japonicum MN110. Plant Growth Regulators. 76: 327–332. https://doi.org/10.1007/s10725-014-9993-x.
Tak N, Bissa G, Gehlot HS. 2020. Methods for isolation and characterization of nitrogen-fixing legume-nodulating bacteria. Methods in Molecular Biology. 2057:119–143. DOI: 10.1007/978-1-4939-9790-9_12
Temprano-Vera F, Rodriguez-Navarro DN, Acosta-Jurado S, Perret X, Fossou RK, Navarro-Gomez P, Zhen T, Yu D, An Q, Buendia-Claveria AM, Moreno J, Lopez-Baena FJ, Ruiz-Sainz JE, Vinardell JM. 2018. Sinorhizobium fredii Strains HH103 and NGR234 Form Nitrogen Fixing Nodules with Diverse Wild Soybeans (Glycine soja) From Central China but are Ineffective on Northern China Accessions. Frontiers in Microbiology. 9:1-17. DOI: 10.3389/fmicb.2018.02843
Tounsi-Hammami S, Le Roux C, Dhane-Fitouri S, De Lajudie P, Duponnois R, Jeddi FB. 2019. Genetic diversity of rhizobia associated with root nodules of white lupin (Lupinus albus L.) in Tunisian calcareous soils. Systematic and Applied Microbiology. 42:448–456. DOI: 10.1016/j.syapm.2019.04.002
Tullio LD, Gomes DF, Silva LP, Hungria M, da Silva Batista JS. 2019. Proteomic analysis of Rhizobium freirei PRF 81T reveals the key role of central metabolic pathways in acid tolerance. Applied Soil Ecology. 135: 98–103. https://doi.org/10.1016/j.apsoil.2018.11.014
United Nations. (UN). (2020). Report of the UN Economist Network for the UN 75th Anniversary Shaping the Trends of Our Time. Accessed from: www.UN.org. https://desapublications.un.org/publications/report-un-economist-network-un-75th-anniversary-shaping-trends-our-time
Verma C, Tripathi VK, Verma LP, Paikra IS. 2020. Effect of ridge and furrow system in soybean cultivation and feasibility of economics. International Journal of Chemical Studies. 8(3):1755-1760. DOI:10.22271/chemi.2020.v8.i3x.9451
Yamakawa T, Hussain AKMA, Ishizuka J. 2003. Soybean preference for Bradyrhizobium japonicum for nodulation. Soil Science and Plant Nutrition. 49: 835–841
Yan J, Li Y, Yan H, Chen WF, Zhang X, Wang ET, Han XZ, Xie ZH. 2017. Agrobacterium salinitolerans sp. nov., a saline–alkaline-tolerant bacterium isolated from the root nodule of Sesbania cannabina. The International Journal of Systematic and Evolutionary Microbiology. 67:1906-1911. DOI: 10.1099/ijsem.0.001885
Zhang J, Guo C, Chen W, de Lajudie P, Zhang Z, Shang Y, Wang ET. 2018. Mesorhizobium wenxiniae sp. Nov., isolated from chickpea (Cicer arietinum L.) in China. The International Journal of Systematic and Evolutionary Microbiology. 68:1930-1936. DOI: 10.1099/ijsem.0.002770.
Zhao H, Xu X, Lei S, Shao D, Jiang C, Shi J, Zhang Y, Liu L, Lei S, Sun H, Huang Q. 2018. Iturin A-like lipopeptides from Bacillus subtilis trigger apoptosis, paraptosis, and autophagy in Caco-2 cells. Journal of Cellular Physiology. 234:6414-6427. DOI: 10.1002/jcp.27377
Zinga MK, Jaiswal SK, Dakora FD. 2017. Presence of diverse rhizobial communities responsible for nodulation of common bean (Phaseolus vulgaris) in South African and Mozambican soils. FEMS Microbiology Ecology. 93:1-16. DOI: 10.1093/femsec/fiw236
Downloads
Published
How to Cite
License
Copyright (c) 2025 Standford Thosago, Salmina Mokgehle, Lucy Molatudi

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. The journal allows readers to read, download, copy, distribute, print, search, link to the full texts or use the articles for any other lawful purpose.
The authors are the sole copyright owners of the published articles. The articles are distributed under the CC BY 4.0 license to the readers.
The readers are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — you may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.