Biosynthesis of β-glucans and morphological features Saccharomyces cerevisiae CNMN-Y-20 yeasts under the action of zinc oxide nanoparticles

Authors

  • Agafia Uastîi
  • Natalia Chiseliţa
  • Nadejda Efremova
  • Alina Beşliu

Keywords:

ZnO nanoparticles,, Saccharomyces cerevisiae,, β-glucans,, morphological features

Abstract

The paper provides new information on β-glucans biosynthesis capacity and the morphological features modification of cells and colonies of Saccharomyces cerevisiae CNMN-Y-20 yeast strain known as producer of β-glucans. It was found that the development cycle and bioproductive capacity of the yeast was affected by cultivation in the presence of ZnO in a concentrations and the contact duration manner. Within 6-24 hours, the reproduction of the nanomodified cell was decreased compared to the control, but after 120 hours of submerged cultivation an insignificant increase in biomass content relative to 1L culture medium was recorded predominantly related to nanoparticle concentrations 0.5-1.0 mg/L. ZnO nanoparticles (<100 nm). Concentrations of 0.5-15 mg/L initiated a 13-15% increase in average dimensions of Saccharomyces cerevisiae CNMN-Y-20 cells and 7-12% increase in the ability to form of β-glucans, especially at concentrations of 1 and 5 mg/L. The correlation coefficient between the cells area and the β-glucans amount is strong (R² = 0.8021). The results provide the possibility of enhancing of the range of analyzes and the formation of reference bases necessary for the strategy to enlarge the biotechnological performance of yeasts.

References

Aguilar-Uscanga, B., Francois, J. M., (2003): A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Letters in Applied Microbiology, 37: 268-274.
Anghel, I., Voica, C., Toma, N., Cojocaru, I., (1991): Biologia şi tehnologia drojdiilor. Bucureşti: Editura Tehnică, vol. 2, 385 p.
Ban, D. Kumar, Subhankar, P., (2014): Zinc Oxide Nanoparticles Modulates the Production of β-Glucosidase and Protects its Functional State Under Alcoholic Condition in Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 173:155–166, DOI 10.1007/s12010-014-0825-2
Barnett, J. A., Payne, R. W., Varrow, D. (2000): Yeasts: Characteristics and Identification. 3-rd Edition, Univ. Press, Cambridge, 1150 p.
Chiseliţa, O., Usatîi, A., Taran, N., Rudic, V., Chiseliţa, N., Adajuc, V., (2010): Tulpină de drojdie Saccharomyces cerevisiae – sursă de β-glucani. Brevet de invenţie MD 4048. MD-BOPI, 6/2010. Cabib, E., Blanco, N., Arroyo, J., (2012): Presence of a large β(1-3)glucan linked to chitin at the Saccharomyces cerevisiae mother-bud neck suggests involvement in localized growth control. Eukaryot Cell, 11(4):388-400.
Chan, GC, Chan, WK, Sze, DM., (2009): The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. Jun 10;2:25.,
Chaung, H. C., Huang, T. C., Yu, J. H., et. al., (20098): Immunomodulatory effects of beta-glucans on porcine alveolar macrophages and bone marrow haematopoietic cell-derived dendritic cells. Veterinary Immunology and Immunopathology, 131, 3-4: 147-157.
Dobias Jan., (2013): Nanoparticles and Microorganisms: from Synthesis to Toxicity. These nr. 5614 pour l,obtetion du grade de docteur es sciences. Ecole Polytechnique Federale de Lausanne. Suisse, 139 p.
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA), (2011): Scientific opinion on the safety of ˮyeast beta-glucansˮ as a novel food ingredient. EFSA J., 9(5):2137.
EL-Diasty Eman M., Ahmed, M.A, Nagwa Okasha, Salwa F. Mansour, Samaa I. EL-Dek, Hanaa M. Abd EL-Khalek, Mariam H. Youssif, (2013): Antifungal activity of Zinc Oxide Nanoparticles against dermatophytic lesions of cattle. Romanian Journal Biophysic., Bucharest, 23, 3: 191–202.
Espita, P., Soares, N., Coimbra, J., Nélio J., Cruz, R., Medeiros, E., (2012): Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food and Bioprocess Technology. 5:1447–1464 DOI 10.1007/s11947-012-0797-6
Hunter, K. W., Gault, R. A., Berner M. D., (2002): Preparation of microparticulate β-glucans from S. cerevisiae for use in immune potentiation. Letters in Applied Microbiology, 35 : 267-271.
Kreger-Van Rij, N.J.W., (1984): General classification of the yeasts. The yeast: Ataxonomic study. 3rd Edition, Elsevier, Amsterdam, 1082 p.
Latgé J.-P., (2007): The cell wall: a carbohydrates armour for the fungal cell. Molecular Microbiology, 66 (2): 279-290
Lesage, G., Bussey, H., (2006): Cell Wall Assembly in S. cerevisiae. Microbiology and Molecular Biology. Reviews, 70(2): 317-343
Liu Hong-Zhi, Qiang Wang, Yuan-Yuan Liu, Fang Fang, (2009): Statistical optimization of culture media and conditions for production of mannan by S. cerevisiae. Biotechnology and Bioprocess Engineering,14: 577-583 DOI/10.1007/s12257-008-0248-4
Mitchell Desma N., Hilary Arnold Godwin, Elizabeth Claudio, (2004): Nanoparticle Toxicity in Saccharomyces cerevisiae: A Comparative Study Using Au Colloid, Ag Colloid, and HAuCl4 • 3H2O in Solution. Nanoscape, Springer, 1: 59-69.
Mrinmoy De Partha, Ghosh, S., Rotello Vincent M., (2008): Applications of Nanoparticles in Biology. Advanced Materials, 20: 4225–4241 DOI: 10.1002/adma.200703183.
Novak, M., Synytsya, A., Gedeon, O., et. al., (2012): Yeast (1-3), (1-6)-d-glucan films: Preparation and characterization of some structural and physical properties. Carbohydrate Polymers, 87: 2496– 2504.
Otero-Gonzalez Lila, Citlali Garcia-Saucedo, James A. Field, Reyes Sierra-Alvarez. (2013): Toxicity of TiO2, ZrO2, Fe0, Fe2O3, and Mn2O3 nanoparticles to the yeast, Saccharomyces cerevisiae. Chemosphere, 93: 1201–1206.
Pillai, R., Redmond, M., Röding, J. (2005): Anti-Wrinkle Therapy: Significant New Findings in the Non-Invasive Cosmetic Treatment of Skin Wrinkles with Beta-Glucan. IFSCC Magazine – Reprint (The Global Publication of the International Federation of Societies of Cosmetic Chemists), 8, Nr 1, january / march.
Rai Mahendra, Nelson Duran, (2011): Metal Nanoparticles in Microbiology, 305 p. ISBN 978-3-642-18311-9 e-ISBN 978-3-642-18312-6 DOI 10.1007/978-3-642-18312-6 Springer Heidelberg Dordrecht London New York. Rondanelli, M, Opizzi, A, Monteferrario, F., (2009): The biological activity of beta-glucans. Minerva Med., 100(3): 237-245
Thammakiti, S, Joaquín, P., (2007): Argumentos a favor de la incorporación de los β-D-glucanos a la alimentación. Endocrinología y Nutrición. 54, 6: 315-324.
Thammakiti, S., Suphantharika, M., Phaesuwan, T., Verduyn, (2004): Preparation of spent brewer's yeast β-glucans for potential applications in the food industry. International Journal of Food Science & Technology, 39(1), 21-29.
Vaseem Mohammad, Ahmad Umar, Yoon-Bong Hahn, (2010): ZnO Nanoparticles: Growth, Properties, and Applications. Metal Oxide Nanostructures and Their Applications. Chapter 4. ISBN: 1-58883-170-1Copyright © 2010 by American Scientific Publishers All rights of reproduction in any form reserved. Edited by Ahmad Umar and Yoon-Bong Hahn Volume 5: Pages 1–36
Volman, J. J., Ramakers, J. D., Plat, J., (2008): Dietary modulation of immune function by beta-glucans. Physiol Behav, 23, 94(2): 276-284.
Ya-Nan Chang, Mingyi Zhang, Lin Xia, Jun Zhang and Gengmei Xing (2012): The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles. Materials, 5: 2850-2871; doi:10.3390/ma5122850
Yoon, T. J., Kim, T. J., Lee H. et al. (2008): Anti-tumor metastatic activity of β-glucan purified from mutated Saccharomyces cerevisiae. International Immunopharmacology, 8, 1 : 36-42.
Zarnea, G., Mihăescu, Gr., Velehorschi, V. (1992): Principii şi tehnici de Microbiologie generală, v.I, Bucureşti, 330 p.

Downloads

Published

2018-05-15

How to Cite

Uastîi, A., Chiseliţa, N., Efremova, N., & Beşliu, A. (2018). Biosynthesis of β-glucans and morphological features Saccharomyces cerevisiae CNMN-Y-20 yeasts under the action of zinc oxide nanoparticles. Journal of Experimental and Molecular Biology, 19(1), 15–24. Retrieved from http://www.jemb.bio.uaic.ro/index.php/jemb/article/view/10

Issue

Section

Articles