Anti-Candida activity of flavonoids - an overview
DOI:
https://doi.org/10.47743/jemb-2024-126Keywords:
flavonoids, Candida, fungistatic, fungicidal, anti-virulence agents, anti-biofilm activity, antifungal resistanceAbstract
Flavonoids are a group of plant polyphenols which received an increased attention during the recent past due to their important antimicrobial activities. Those compounds could be a reliable source of new antifungals, used to efficiently control infections caused by pathogenic fungi such as Candida spp. Candida species represents a leading cause of mortality all around the world, posing a serious threat to medical systems. Therefore, finding new compounds with antifungal activity for treatment of Candida infections is a real challenge of modern medicine. This review focuses on the antifungal activity of natural, semi-synthetic and synthetic flavonoids against the most prevalent pathogenic Candida species. In addition, the review outlines the mechanisms of action and the possible use of flavonoids as anti-virulence agents to withstand Candida pathogenicity and antifungal resistance.
References
Abirami G, Alexpandi R, Durgadevi R, Kannappan A, Veera Ravi A. 2020. Inhibitory Effect of Morin Against Candida albicans Pathogenicity and Virulence Factor Production: An in vitro and in vivo Approaches. Front Microbiol. 11. doi:10.3389/fmicb.2020.561298.
Aboody MS, Mickymaray S. 2020. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics. 9(2):45. doi:10.3390/antibiotics9020045.
Ahmad A, Wani MY, Patel M, Sobral AJFN, Duse AG, Aqlan FM, Al-Bogami AS. 2017. Synergistic antifungal effect of cyclized chalcone derivatives and fluconazole against Candida albicans. Medchemcomm. 8(12):2195–2207. doi:10.1039/C7MD00440K.
Al-Musawi TS, Alkhalifa WA, Alasaker NA, Rahman JU, Alnimr AM. 2021. A seven-year surveillance of Candida bloodstream infection at a university hospital in KSA. J Taibah Univ Med Sci. 16(2):184–190. doi:10.1016/j.jtumed.2020.12.002.
Andrade JT, Santos FRS, Lima WG, Sousa CDF, Oliveira LSFM, Ribeiro RIMA, Gomes AJPS, Araújo MGF, Villar JAFP, Ferreira JMS. 2018. Design, synthesis, biological activity and structure-activity relationship studies of chalcone derivatives as potential anti-Candida agents. J Antibiot (Tokyo). 71(8):702–712. doi:10.1038/s41429-018-0048-9.
Arendrup MC, Patterson TF. 2017. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. J Infect Dis. 216(suppl_3):S445–S451. doi:10.1093/infdis/jix131.
Arikan S. 2007. Current status of antifungal susceptibility testing methods. Med Mycol. 45(7):569–587. doi:10.1080/13693780701436794.
Babii C, Savu M, Motrescu I, Birsa LM, Sarbu LG, Stefan M. 2021. The Antibacterial Synthetic Flavonoid BrCl-Flav Exhibits Important Anti-Candida Activity by Damaging Cell Membrane Integrity. Pharmaceuticals. 14(11):1130. doi:10.3390/ph14111130.
Barceló S, Peralta M, Calise M, Finck S, Ortega G, Diez RA, Cabrera JL, Pérez C. 2017. Interactions of a prenylated flavonoid from Dalea elegans with fluconazole against azole- resistant Candida albicans. Phytomedicine. 32:24–29. doi:10.1016/j.phymed.2017.05.001.
Behbehani JM, Irshad M, Shreaz S, Karched M. 2019. Synergistic effects of tea polyphenol epigallocatechin 3-O-gallate and azole drugs against oral Candida isolates. J Mycol Med. 29(2):158–167. doi:10.1016/j.mycmed.2019.01.011.
Belofsky G, Kolaczkowski M, Adams E, Schreiber J, Eisenberg V, Coleman CM, Zou Y, Ferreira D. 2013. Fungal ABC Transporter-Associated Activity of Isoflavonoids from the Root Extract of Dalea formosa. J. Nat. Prod. 76(5):915–925. doi:10.1021/np4000763.
Bodede O, More GK, Prinsloo G. 2021. Antimicrobial, Cytotoxic and Oxidative Stress Inhibitory Activities of Terpenoids and Flavonols from Senegalia nigrescens (Oliv.) P.J.H. Hurter. Iran J Pharm Res. doi:10.22037/ijpr.2021.115653.15463.
Burmaoglu S, Algul O, Gobek A, Aktas Anil D, Ulger M, Erturk BG, Kaplan E, Dogen A, Aslan G. 2017. Design of potent fluoro-substituted chalcones as antimicrobial agents. J Enzyme Inhib Med Chem. 32(1):490–495. doi:10.1080/14756366.2016.1265517.
Cao YingYing, Dai B, Wang Y, Huang S, Xu Y, Cao YongBing, Gao P, Zhu Z, Jiang Y. 2008. In vitro activity of baicalein against Candida albicans biofilms. Int J Antimicrob Agents. 32(1):73–77. doi:10.1016/j.ijantimicag.2008.01.026.
Cavalheiro M, Teixeira MC. 2018. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front Med. 5. doi:10.3389/fmed.2018.00028.
Chen M, Zhai L, Arendrup MC. 2015. In vitro activity of 23 tea extractions and epigallocatechin gallate against Candida species. Med Mycol. 53(2):194–198. doi:10.1093/mmy/myu073.
Da X, Nishiyama Y, Tie D, Hein KZ, Yamamoto O, Morita E. 2019. Antifungal activity and mechanism of action of Ou-gon (Scutellaria root extract) components against pathogenic fungi. Sci Rep. 9(1):1683. doi:10.1038/s41598-019-38916-w.
Dahibhate NL, Kumar D, Kumar K. 2021. Determination of Bioactive Polyphenols in Mangrove Species and Their in-Vitro anti- Candida Activities by Ultra-High-Performance Liquid Chromatography – Electrospray Ionization – Tandem Mass Spectrometry (UPLC-ESI-MS/MS). Anal Lett. 54(4):608–624. doi:10.1080/00032719.2020.1774600.
Dai B-D, Cao Y-Y, Huang S, Xu Y-G, Gao P-H, Wang Y, Jiang Y-Y. 2009. Baicalein induces programmed cell death in Candida albicans. J Microbiol Biotechnol. 19(8):803–9. doi:10.4014/jmb.0812.662.
Deepa K, Jeevitha T, Michael A. 2015. In vitro evaluation of virulence factors of Candida species isolated from oral cavity. J Microbiol Antimicrob. 7(3):28–32. doi:10.5897/JMA2015.0337.
Douglas LM, Konopka JB. 2016. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans. J Microbiol. 54(3):178–191. doi:10.1007/s12275-016-5621-y.
El-Messery SM, Habib E-SE, Al-Rashood STA, Hassan GS. 2018. Synthesis, antimicrobial, anti-biofilm evaluation, and molecular modelling study of new chalcone linked amines derivatives. J Enzyme Inhib Med Chem. 33(1):818–832. doi:10.1080/14756366.2018.1461855.
Emami S, Shojapour S, Faramarzi MA, Samadi N, Irannejad H. 2013. Synthesis, in vitro antifungal activity and in silico study of 3-(1,2,4-triazol-1-yl)flavanones. Eur J Med Chem. 66:480–488. doi:10.1016/j.ejmech.2013.06.008.
Espinel-Ingroff A, Fothergill A, Peter J, Rinaldi MG, Walsh TJ. 2002. Testing Conditions for Determination of Minimum Fungicidal Concentrations of New and Established Antifungal Agents for Aspergillus spp.: NCCLS Collaborative Study. J Clin Microbiol. 40(9):3204-3208. doi:10.1128/JCM.40.9.3204-3208.2002.
Fleitas Martínez O, Cardoso MH, Ribeiro SM, Franco OL. 2019. Recent Advances in Anti-virulence Therapeutic Strategies With a Focus on Dismantling Bacterial Membrane Microdomains, Toxin Neutralization, Quorum-Sensing Interference and Biofilm Inhibition. Front Cell Infect Microbiol. 9:74. doi:10.3389/fcimb.2019.00074.
Fu Y, Wang W, Zeng Q, Wang T, Qian W. 2021. Antibiofilm Efficacy of Luteolin Against Single and Dual Species of Candida albicans and Enterococcus faecalis. Front Microbiol. 12. doi:10.3389/fmicb.2021.715156.
Gabriela N, Rosa AM, Catiana ZI, Soledad C, Mabel OR, Esteban SJ, Veronica B, Daniel W, Ines IM. 2014. The Effect of Zuccagnia punctata, an Argentine Medicinal Plant, on Virulence Factors from Candida Species. Nat Prod Commun. 9(7):1934578X1400900. doi:10.1177/1934578X1400900712.
Gao M, Wang H, Zhu L. 2016. Quercetin Assists Fluconazole to Inhibit Biofilm Formations of Fluconazole-Resistant Candida Albicans in In Vitro and In Vivo Antifungal Managements of Vulvovaginal Candidiasis. Cell Physiol Biochem. 40(3–4):727–742. doi:10.1159/000453134.
Gibellini L, Bianchini E, De Biasi S, Nasi M, Cossarizza A, Pinti M. 2015. Natural Compounds Modulating Mitochondrial Functions. Evid. Based Complement. Alternat. Med. 2015:1–13. doi:10.1155/2015/527209.
Gulati M, Nobile CJ. 2016. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 18(5):310–321. doi:10.1016/J.MICINF.2016.01.002.
Hao Y, Wei Z, Wang Z, Li G, Yao Y, Dun B. 2021. Biotransformation of Flavonoids Improves Antimicrobial and Anti-Breast Cancer Activities In Vitro. Foods. 10(10):2367. doi:10.3390/foods10102367.
Illicachi L, Montalvo-Acosta J, Insuasty A, Quiroga J, Abonia R, Sortino M, Zacchino S, Insuasty B. 2017. Synthesis and DFT Calculations of Novel Vanillin-Chalcones and Their 3-Aryl-5-(4-(2-(dimethylamino)-ethoxy)-3-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbaldehyde Derivatives as Antifungal Agents. Molecules. 22(9):1476. doi:10.3390/molecules22091476.
Ivanov M, Kannan A, Stojković DS, Glamočlija J, Calhelha RC, Ferreira ICFR, Sanglard D, Soković M. 2020. Flavones, Flavonols, and Glycosylated Derivatives—Impact on Candida albicans Growth and Virulence, Expression of CDR1 and ERG11, Cytotoxicity. Pharmaceuticals. 14(1):27. doi:10.3390/ph14010027.
Jamiu AT, Albertyn J, Sebolai OM, Pohl CH. 2021. Update on Candida krusei, a potential multidrug-resistant pathogen. Med Mycol. 59(1):14–30. doi:10.1093/mmy/myaa031.
Janeczko M, Gmur D, Kochanowicz E, Górka K, Skrzypek T. 2022. Inhibitory effect of a combination of baicalein and quercetin flavonoids against Candida albicans strains isolated from the female reproductive system. Fungal Biol. 126(6–7):407–420. doi:10.1016/j.funbio.2022.05.002.
Jin Y-S. 2019. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg Med Chem Lett. 29(19):126589. doi:10.1016/j.bmcl.2019.07.048.
Kang K, Fong W-P, Tsang PW-K. 2010. Antifungal Activity of Baicalein Against Candida krusei Does Not Involve Apoptosis. Mycopathologia. 170(6):391–396. doi:10.1007/s11046-010-9341-2.
Kowalska-Krochmal B, Dudek-Wicher R. 2021. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens. 10(2):165. doi:10.3390/pathogens10020165.
Kumar S, Pandey AK. 2013. Chemistry and Biological Activities of Flavonoids: An Overview. Sci World J. 2013:1–16. doi:10.1155/2013/162750.
Kvasnickova E, Matatkova O, Cejkova A, Masak J. 2015. Evaluation of baicalein, chitosan and usnic acid effect on Candida parapsilosis and Candida krusei biofilm using a Cellavista device. J Microbiol Methods. 118:106–12. doi:10.1016/j.mimet.2015.09.002.
Łącka I, Konieczny MT, Bułakowska A, Rzymowski T, Milewski S. 2011. Antifungal action of the oxathiolone-fused chalcone derivative. Mycoses. 54(5):e407–e414. doi:10.1111/j.1439-0507.2010.01936.x.
Lal K, Yadav P, Kumar Ashwani, Kumar Anil, Paul AK. 2018. Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acid-chalcone-1,2,3-triazole hybrids. Bioorg Chem. 77:236–244. doi:10.1016/j.bioorg.2018.01.016.
Lee H-S, Kim Y. 2022. Myricetin Disturbs the Cell Wall Integrity and Increases the Membrane Permeability of Candida albicans. J Microbiol Biotechnol. 32(1):37–45. doi:10.4014/jmb.2110.10014.
Lee H, Woo E-R, Lee DG. 2018. Apigenin induces cell shrinkage in Candida albicans by membrane perturbation. FEMS Yeast Res. 18(1). doi:10.1093/femsyr/foy003.
LIN M-Y, YUAN Z-L, HU D-D, HU G-H, ZHANG R-L, ZHONG H, YAN L, JIANG Y-Y, SU J, WANG Y. 2019. Effect of loureirin A against Candida albicans biofilms. Chin J Nat Med. 17(8):616–623. doi:10.1016/S1875-5364(19)30064-0.
Liu N, Zhang N, Zhang S, Zhang L, Liu Q. 2021. Phloretin inhibited the pathogenicity and virulence factors against Candida albicans. Bioengineered. 12(1):2420–2431. doi:10.1080/21655979.2021.1933824.
Liu W, Li LP, Zhang JD, Li Q, Shen H, Chen SM, He LJ, Yan L, Xu GT, An MM, Jiang YY. 2014. Synergistic Antifungal Effect of Glabridin and Fluconazole. Sturtevant J, editor. PLoS One. 9(7):e103442. doi:10.1371/journal.pone.0103442.
Liu Yan, Zhao Y, Guo D, Liu W, Liu Yu-xuan. 2017. Synergistic Antimicrobial Activity of Berberine Hydrochloride, Baicalein and Borneol against Candida albicans. Chinese Herb Med. 9(4):353–357. doi:10.1016/S1674-6384(17)60115-1.
Lobo CIV, Lopes ACU de A, Klein MI. 2021. Compounds with Distinct Targets Present Diverse Antimicrobial and Antibiofilm Efficacy against Candida albicans and Streptococcus mutans, and Combinations of Compounds Potentiate Their Effect. J Fungi. 7(5):340. doi:10.3390/jof7050340.
Ma H, Zhao X, Yang L, Su P, Fu P, Peng J, Yang N, Guo G. 2020. Antimicrobial Peptide AMP-17 Affects Candida albicans by Disrupting Its Cell Wall and Cell Membrane Integrity. Infect Drug Resist. 13:2509–2520. doi:10.2147/IDR.S250278.
Mangoyi R, Midiwo J, Mukanganyama S. 2015. Isolation and characterization of an antifungal compound 5-hydroxy-7,4’-dimethoxyflavone from Combretum zeyheri. BMC Complement Altern Med. 15(1):405. doi:10.1186/s12906-015-0934-7.
Manoharan RK, Lee J-H, Kim Y-G, Lee J. 2017. Alizarin and chrysazin inhibit biofilm and hyphal formation by Candida albicans. Front Cell Infect Microbiol. 7:447. doi:10.3389/fcimb.2017.00447.
Mendoza-Reyes DF, Gómez-Gaviria M, Mora-Montes HM. 2022. Candida lusitaniae: Biology, Pathogenicity, Virulence Factors, Diagnosis, and Treatment. Infect Drug Resist. Volume 15:5121–5135. doi:10.2147/IDR.S383785.
Messier C, Grenier D. 2011. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses. 54(6):e801–e806. doi:10.1111/j.1439-0507.2011.02028.x.
Moazeni M, Hedayati MT, Nabili M, Mousavi SJ, Abdollahi Gohar A, Gholami S. 2017. Glabridin triggers over-expression of MCA1 and NUC1 genes in Candida glabrata: Is it an apoptosis inducer? J Mycol Med. 27(3):369–375. doi:10.1016/j.mycmed.2017.05.002.
Mulaudzi RB, Ndhlala AR, Kulkarni MG, Van Staden J. 2012. Pharmacological properties and protein binding capacity of phenolic extracts of some Venda medicinal plants used against cough and fever. J Ethnopharmacol. 143(1)185-93. doi:10.1016/j.jep.2012.06.022.
Narayana KR, Reddy MS, Chaluvadi MR, Krishna DR. 2001. Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J Pharmacol.
Nguyen W, Grigori L, Just E, Santos C, Seleem D. 2021. The in vivo anti-Candida albicans activity of flavonoids. J Oral Biosci. 63(2):120–128. doi:10.1016/j.job.2021.03.004.
Ning Y, Ling J, Wu CD. 2015. Synergistic effects of tea catechin epigallocatechin gallate and antimycotics against oral Candida species. Arch Oral Biol. 60(10):1565–1570. doi:10.1016/j.archoralbio.2015.07.001.
Oliveira VM, Carraro E, Auler ME, Khalil NM. 2016. Quercetin and rutin as potential agents antifungal against Cryptococcus spp. Braz. J. Biol.76(4):1029–1034. doi:10.1590/1519-6984.07415
de Oliveira Filho AA, de Oliveira HMBF, de Sousa JP, Meireles DRP, de Azevedo Maia GL, Filho JMB, de Siqueira Júnior JP, Lima EO. 2016. In vitro anti-Candida activity and mechanism of action of the flavonoid isolated from Praxelis clematidea against Candida albicans species. J Appl Pharm Sci. 6(1):066–069. doi:10.7324/JAPS.2016.600111.
de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, de Sousa Cartágenes M do S, Filho AKDB, do Nascimento FRF, Ramos RM, Pires ERRB, de Andrade MS, Rocha FMG, de Andrade Monteiro C. 2018. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. Front Microbiol. 9. doi:10.3389/fmicb.2018.01351.
Osmaniye D, Kaya Cavusoglu B, Saglik B, Levent S, Acar Cevik U, Atli O, Ozkay Y, Kaplancikli Z. 2018. Synthesis and Anticandidal Activity of New Imidazole-Chalcones. Molecules. 23(4):831. doi:10.3390/molecules23040831.
Patel M, Srivastava V, Ahmad A. 2020. derived 5,6,8-trihydroxy-7,4′ dimethoxy flavone inhibits ergosterol synthesis and the production of hyphae and biofilm in. J Ethnopharmacol. 259:112965. doi:10.1016/j.jep.2020.112965.
Picerno P, Mencherini T, Sansone F, Del Gaudio F, Granata I, Porta A, Aquino RP. 2011. Screening of a polar extract of Paeonia rockii: composition and antioxidant and antifungal activities. J Ethnopharmacol. 138(3):705-12. doi:10.1016/j.jep.2011.09.056.
Peralta MA, da Silva MA, Ortega MG, Cabrera JL, Paraje MG. 2015. Antifungal activity of a prenylated flavonoid from Dalea elegans against Candida albicans biofilms. Phytomedicine. 22(11):975–980. doi:10.1016/j.phymed.2015.07.003.
Pereira R, Santos Fontenelle RO, Brito EHS, Morais SM. 2021. Biofilm of Candida albicans: formation, regulation and resistance. J Appl Microbiol. 131(1):11–22. doi:10.1111/jam.14949.
Pujol I, Aguilar C, Fernández-Ballart J, Guarro J. 2000. Comparison of the minimum fungicidal concentration of amphotericin B determined in filamentous fungi by macrodilution and microdilution methods. Med. Mycol. 38(1):23-6. doi:10.1080/mmy.38.1.23.26.
Rajasekharan SK, Ramesh S, Bakkiyaraj D. 2015. Synergy of flavonoids with HDAC inhibitor: new approach to target Candida tropicalis biofilms. J Chemother. 27(4):246–249. doi:10.1179/1973947814Y.0000000186.
Rocha MFG, Sales JA, da Rocha MG, Galdino LM, de Aguiar L, Pereira-Neto W de A, de Aguiar Cordeiro R, Castelo-Branco D de SCM, Sidrim JJC, Brilhante RSN. 2019. Antifungal effects of the flavonoids kaempferol and quercetin: a possible alternative for the control of fungal biofilms. Biofouling. 35(3):320–328. doi:10.1080/08927014.2019.1604948.
Sachikonye M, Mukanganyama S. 2016. Antifungal and Drug Efflux Inhibitory Activity of Selected Flavonoids Against Candida albicans and Candida krusei. J Biol Act Prod from Nat. 6(3):223–236. doi:10.1080/22311866.2016.1231078.
Sadeghi-Ghadi Z, Vaezi A, Ahangarkani F, Ilkit M, Ebrahimnejad P, Badali H. 2020. Potent in vitro activity of curcumin and quercetin co-encapsulated in nanovesicles without hyaluronan against Aspergillus and Candida isolates. J Mycol Med. 30(4):101014. doi:10.1016/j.mycmed.2020.101014.
Saito H, Tamura M, Imai K, Ishigami T, Ochiai K. 2013. Catechin inhibits Candida albicans dimorphism by disrupting Cek1 phosphorylation and cAMP synthesis. Microb Pathog. 56:16-20. doi:10.1016/j.micpath.2013.01.002.
Salazar-Aranda R, Granados-Guzmán G, Pérez-Meseguer J, González G, de Torres N. 2015. Activity of Polyphenolic Compounds against Candida glabrata. Molecules. 20(10):17903–17912. doi:10.3390/molecules201017903.
Santos M, Rocha F, Silva D, Ferraz AC, Andrade JT, Marjorie K, Herrera S, Lima WG. 2018. Triazole ‑ chalcones : Lack of Antibacterial , Anti ‑ candida , and Anti ‑ dengue Virus Activities. J Pharm Negat Results. doi:10.4103/jpnr.JPNR.
Sarbu LG, Bahrin LG, Babii C, Stefan M, Birsa ML. 2019. Synthetic flavonoids with antimicrobial activity: a review. J Appl Microbiol. 127(5):1282–1290. doi:10.1111/jam.14271.
Seleem D, Benso B, Noguti J, Pardi V, Murata RM. 2016. In Vitro and In Vivo Antifungal Activity of Lichochalcone-A against Candida albicans Biofilms. Bahn Y-S, editor. PLoS One. 11(6):e0157188. doi:10.1371/journal.pone.0157188.
Seleem D, Pardi V, Murata RM. 2017. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch Oral Biol. 76:76–83. doi:10.1016/j.archoralbio.2016.08.030.
Siddiqui ZN, Praveen S, Musthafa TNM, Ahmad A, Khan AU. 2012. Thermal solvent-free synthesis of chromonyl chalcones, pyrazolines and their in vitro antibacterial, antifungal activities. J Enzyme Inhib Med Chem. 27(1):84–91. doi:10.3109/14756366.2011.577035.
da Silva CR, de Andrade Neto JB, de Sousa Campos R, Figueiredo NS, Sampaio LS, Magalhães HIF, Cavalcanti BC, Gaspar DM, de Andrade GM, Lima ISP, de Barros Viana GS, de Moraes MO, Lobo MDP, Grangeiro TB, Nombre Júnior HV. 2014. Synergistic Effect of the Flavonoid Catechin, Quercetin, or Epigallocatechin Gallate with Fluconazole Induces Apoptosis in Candida tropicalis Resistant to Fluconazole. Antimicrob Agents Chemother. 58(3):1468–1478. doi:10.1128/AAC.00651-13.
Sharma M, Prasad R. 2011. The Quorum-Sensing Molecule Farnesol Is a Modulator of Drug Efflux Mediated by ABC Multidrug Transporters and Synergizes with Drugs in Candida albicans. Antimicrob. Agents Chemother. 55(10):4834–4843. doi:10.1128/AAC.00344-11.
Simone GD de O, Rafael GL, Claudio MP de P, Evandro P. 2016. Anti-candida and anti-enzyme activity and cytotoxicity of 2-phenyl-4H-chromen-4-one. African J Microbiol Res. 10(7):219–224. doi:10.5897/AJMR2012.7626.
Singh BN, Upreti DK, Singh BR, Pandey G, Verma S, Roy S, Naqvi AH, Rawat AKS. 2015. Quercetin Sensitizes Fluconazole-Resistant Candida albicans To Induce Apoptotic Cell Death by Modulating Quorum Sensing. Antimicrob Agents Chemother. 59(4):2153–2168. doi:10.1128/AAC.03599-14.
Soberón JR, Sgariglia MA, Carabajal Torrez JA, Aguilar FA, Pero EJI, Sampietro DA, Fernández de Luco J, Labadie GR. 2020. Antifungal activity and toxicity studies of flavanones isolated from Tessaria dodoneifolia aerial parts. Heliyon. 6(10):e05174. doi:10.1016/j.heliyon.2020.e05174.
Sohn H-Y. 2010. Fungicidal Effect of Prenylated Flavonol, Papyriflavonol A, Isolated from Broussonetia papyrifera (L.) Vent. Against Candida albicans. J Microbiol Biotechnol. 20(10):1397–1402. doi:10.4014/jmb.1007.07026.
Su L-Y, Ni G-H, Liao Y-C, Su L-Q, Li J, Li J-S, Rao G-X, Wang R-R. 2021. Antifungal Activity and Potential Mechanism of 6,7, 4′-O-Triacetylscutellarein Combined With Fluconazole Against Drug-Resistant C. albicans. Front Microbiol. 12. doi:10.3389/fmicb.2021.692693.
Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, Škrlec I. 2021. Candida albicans—The Virulence Factors and Clinical Manifestations of Infection. J Fungi. 7(2):79. doi:10.3390/jof7020079.
Tamfu AN, Sawalda M, Fotsing MT, Kouipou RMT, Talla E, Chi GF, Epanda JJE, Mbafor JT, Baig TA, Jabeen A, Shaheen F. 2020. A new isoflavonol and other constituents from Cameroonian propolis and evaluation of their anti-inflammatory, antifungal and antioxidant potential. Saudi J Biol Sci. 27(6):1659–1666. doi:10.1016/j.sjbs.2019.11.035.
Tsui C, Kong EF, Jabra-Rizk MA. 2016. Pathogenesis of Candida albicans biofilm. Mobley H, editor. Pathog Dis. 74(4):ftw018. doi:10.1093/femspd/ftw018.
Wang T, Shi G, Shao J, Wu D, Yan Y, Zhang M, Cui Y, Wang C. 2015. In vitro antifungal activity of baicalin against Candida albicans biofilms via apoptotic induction. Microb Pathog. 87:21–29. doi:10.1016/j.micpath.2015.07.006.
Wei Z-Y, Chi K-Q, Yu Z-K, Liu H-Y, Sun L-P, Zheng C-J, Piao H-R. 2016. Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties. Bioorg Med Chem Lett. 26(24):5920–5925. doi:10.1016/j.bmcl.2016.11.001.
Xin X, Zhang M, Li X-F, Zhao G. 2019. Biocatalytic Synthesis of Lipophilic Baicalin Derivatives as Antimicrobial Agents. J Agric Food Chem. 67(42):11684–11693. doi:10.1021/acs.jafc.9b04667.
Yang LF, Liu X, Lv LL, Ma ZM, Feng XC, Ma TH. 2018. Dracorhodin perchlorate inhibits biofilm formation and virulence factors of Candida albicans. J Mycol Med. 28(1):36–44. doi:10.1016/j.mycmed.2017.12.011.
Yoo Y-J, Kim AR, Perinpanayagam H, Han SH, Kum K-Y. 2020. Candida albicans Virulence Factors and Pathogenicity for Endodontic Infections. Microorganisms. 8(9):1300. doi:10.3390/microorganisms8091300.
Yun J, Lee H, Ko HJ, Woo E-R, Lee DG. 2015. Fungicidal effect of isoquercitrin via inducing membrane disturbance. Biochim Biophys Acta - Biomembr. 1848(2):695–701. doi:10.1016/j.bbamem.2014.11.019.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Savu Mihaela, Marius Stefan
This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. The journal allows readers to read, download, copy, distribute, print, search, link to the full texts or use the articles for any other lawful purpose.
The authors are the sole copyright owners of the published articles. The articles are distributed under the CC BY 4.0 license to the readers.
The readers are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — you may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.