Linkage between ACE2 Gene Polymorphisms and SARS-CoV-2 infection in Burkina Faso, sub-Saharan Africa
DOI:
https://doi.org/10.47743/jemb-2024-136Keywords:
SARS-CoV-2, ACE2, polymorphism, haplotypes, Burkina FasoAbstract
The ACE2 gene polymorphisms (rs143936283, rs146676783, and rs4646116) in infected and noninfected persons by SARS-CoV-2 in Burkina Faso. Our cross-sectional study population comprised 137 SARS-CoV-2 infected persons and 181 non-infected persons. Three ACE2 gene polymorphisms rs143936283, rs146676783, and rs4646116, were genotyped using the real-time PCR standard TaqMan allelic discrimination technique. The association between SARS-CoV-2 infection and the polymorphisms were evaluated by a binary logistic regression. There was no association between the polymorphisms rs143936283, rs4646116 haplotypes, and SARS-CoV-2 infection in our study population. However, in the female population, the heterozygous genotype CT of rs146676783 increased by two and half the risk (OR=2.58 95%CI (1.2-5.48), p= 0.014) of being infected by SARS-CoV-2. Additionally, carrying the homozygous minor allele (genotype TT) of rs146676783 increased by more than five and half the risk (OR=5.57 95%CI (1.64-18.78), p=0.006) of being infected by SARS-CoV-2 among females. This study showed that the ACE2 gene variant rs146676783 was associated with an increased risk of being infected by SARS-CoV-2 in females, suggesting a need for further investigation to contribute to a better understanding of the African COVID-19 enigma.
References
COVID-19 dashboard. 2023. [accessed 2023 3/11/2023]. https://coronavirus.jhu.edu/map.html.
Abdou Azaque Zoure WES, Théodora Mahoukèdè Zohoncon, Henri Gautier Ouedraogo, Pegdwendé Abel Sorgho, Tani Sagna, Albert Théophane Yonli, Serge Théophile Soubeiga, Herman Karim Sombie, Rebeca Compaore, Charlemagne Dabire, Abdoul R. Nikiema, Modibo Camara, Boubacar Savadogo, Alidou Kagambega, Dinanibé Kambire, Oumarou Ouedraogo, Sylvie Zida, Mahamoudou Sanou, Seni Kouanda, Jacques Simpore. 2022. COVID-19 :Virological and clinical profi le of patients diagnosed in two laboratories in ouagadougou, Burkina Faso. Rev int sc méd Abj 24(1):85.
Ahmed A. Suleiman TAR, Ali M. Alrawi, Mustafa F. Dawood. 2021. The impact of ace2 genetic polymorphisms (rs2106809 and rs2074192) on gender susceptibility to COVID-19 infection and recovery: A systematic review. Baghdad Journal of Biochemistry and Applied Biological Sciences. 2(3):14.
Batlle D, Soler MJ, Sparks MA, Hiremath S, South AM, Welling PA, Swaminathan S, Covid, Ace2 in Cardiovascular L, Kidney Working G. 2020. Acute kidney injury in COVID-19: Emerging evidence of a distinct pathophysiology. J Am Soc Nephrol. 31(7):1380-1383.
Berletch JB, Yang F, Xu J, Carrel L, Disteche CM. 2011. Genes that escape from x inactivation. Hum Genet. 130(2):237-245.
Carrel L, Willard HF. 2005. X-inactivation profile reveals extensive variability in x-linked gene expression in females. Nature. 434(7031):400-404.
Chen F, Zhang Y, Li X, Li W, Liu X, Xue X. 2021. The impact of ace2 polymorphisms on COVID-19 disease: Susceptibility, severity, and therapy. Frontiers in Cellular and Infection Microbiology. 11.
Compaore TR, Soubeiga ST, Ouattara AK, Obiri-Yeboah D, Tchelougou D, Maiga M, Assih M, Bisseye C, Bakouan D, Compaore IP et al. 2016. Apobec3g variants and protection against hiv-1 infection in Burkina Faso. PLoS One. 11(1):e0146386.
Cruz JO, Conceicao I, Sousa SMB, Luizon MR. 2021. Functional prediction and frequency of coding variants in human ace2 at binding sites with sars-cov-2 spike protein on different populations. J Med Virol. 93(1):71-73.
Darbani B. 2020. The expression and polymorphism of entry machinery for COVID-19 in human: Juxtaposing population groups, gender, and different tissues. Int J Environ Res Public Health. 17(10).
Farshbafnadi M, Kamali Zonouzi S, Sabahi M, Dolatshahi M, Aarabi MH. 2021. Aging & COVID-19 susceptibility, disease severity, and clinical outcomes: The role of entangled risk factors. Exp Gerontol. 154:111507.
Hussain M, Jabeen N, Raza F, Shabbir S, Baig AA, Amanullah A, Aziz B. 2020. Structural variations in human ace2 may influence its binding with sars-cov-2 spike protein. J Med Virol. 92(9):1580-1586.
Institut national de la statistique et de la démographie. Annuaire statistique national du Burkina Faso. 2021. 2022. Decembre 2022. Burkina Faso; [accessed 3/11/2023]. http://insd.bf/contenu/pub_periodiques/annuaires_stat/Annuaires_stat_nationaux_BF/Annuaire_Statistique_National_2021.pdf.
COVID-19 map - johns hopkins coronavirus resource center. 2023. @JohnsHopkins; [accessed 3/11/2023]. https://coronavirus.jhu.edu/map.html.
Mahmood ZS, Fadhil HY, Abdul Hussein TA, Ad'hiah AH. 2022. Severity of coronavirus disease 19: Profile of inflammatory markers and ace (rs4646994) and ace2 (rs2285666) gene polymorphisms in iraqi patients. Meta Gene. 31:101014.
Meng N, Zhang Y, Ma J, Li H, Zhou F, Qu Y. 2015. Association of polymorphisms of angiotensin i converting enzyme 2 with retinopathy in type 2 diabetes mellitus among chinese individuals. Eye (Lond). 29(2):266-271.
Mohana VU, Swapna N, Surender RS, Vishnupriya S, Padma T. 2012. Gender-related association of agt gene variants (m235t and t174m) with essential hypertension--a case-control study. Clin Exp Hypertens. 34(1):38-44.
Nelson-Sathi S, Umasankar PK, Sreekumar E, Nair RR, Joseph I, Nori SRC, Philip JS, Prasad R, Navyasree KV, Ramesh S et al. 2022. Mutational landscape and in silico structure models of sars-cov-2 spike receptor binding domain reveal key molecular determinants for virus-host interaction. BMC Mol Cell Biol. 23(1):2.
Ouattara AK, Traoré L, Compaoré TR, Zohoncon TM, Simporé J. 2023. G6pd deficiency and COVID-19 in Burkina Faso: A possible link? Journal of Biosciences and Medicines. 11(1):57.
Patel SK, Wai B, Ord M, MacIsaac RJ, Grant S, Velkoska E, Panagiotopoulos S, Jerums G, Srivastava PM, Burrell LM. 2012. Association of ace2 genetic variants with blood pressure, left ventricular mass, and cardiac function in caucasians with type 2 diabetes. Am J Hypertens. 25(2):216-222.
Sagna T, Ouedraogo P, Traore L, Obiri-Yeboah D, Yonli A, Tapsoba A, Tovo F, Sorgho A, Zongo L, Nikiema O et al. 2022. Enigma of the high prevalence of anti-sars-cov-2 antibodies in hiv-positive people with no symptoms of COVID-19 in Burkina Faso. J Public Health Afr. 13(1):1778.
Samavati L, Uhal BD. 2020. Ace2, much more than just a receptor for sars-cov-2. Front Cell Infect Microbiol. 10:317.
Sarangarajan R, Winn R, Kiebish MA, Bountra C, Granger E, Narain NR. 2021. Ethnic prevalence of angiotensin-converting enzyme deletion (d) polymorphism and COVID-19 risk: Rationale for use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. J Racial Ethn Health Disparities. 8(4):973-980.
Savadogo M OA, Dahani CK, Nikiéma O, Traoré S, Nagréongo B, Sawadogo N. 2021. Comparative study of clinical manifestations observed in positive patients versus negative patients to the suspected COVID-19 at the yalgado ouédraogo teaching hospital in ouagadougou (Burkina Faso). Rev Mali Infect Microbiol. 16( 1):4.
Scialo F, Daniele A, Amato F, Pastore L, Matera MG, Cazzola M, Castaldo G, Bianco A. 2020. Ace2: The major cell entry receptor for sars-cov-2. Lung. 198(6):867-877.
Srivastava A, Pandey RK, Singh PP, Kumar P, Rasalkar AA, Tamang R, van Driem G, Shrivastava P, Chaubey G. 2020. Most frequent south asian haplotypes of ace2 share identity by descent with east eurasian populations. PLoS One. 15(9):e0238255.
Struck NS, Lorenz E, Deschermeier C, Eibach D, Kettenbeil J, Loag W, Brieger SA, Ginsbach AM, Obirikorang C, Maiga-Ascofare O et al. 2022. High seroprevalence of sars-cov-2 in burkina-Faso, ghana and madagascar in 2021: A population-based study. BMC Public Health. 22(1):1676.
Suryamohan K, Diwanji D, Stawiski EW, Gupta R, Miersch S, Liu J, Chen C, Jiang YP, Fellouse FA, Sathirapongsasuti JF et al. 2021. Human ace2 receptor polymorphisms and altered susceptibility to sars-cov-2. Commun Biol. 4(1):475.
Talebizadeh Z, Simon SD, Butler MG. 2006. X chromosome gene expression in human tissues: Male and female comparisons. Genomics. 88(6):675-681.
Trougakos IP, Stamatelopoulos K, Terpos E, Tsitsilonis OE, Aivalioti E, Paraskevis D, Kastritis E, Pavlakis GN, Dimopoulos MA. 2021. Insights to sars-cov-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci. 28(1):9.
Wang J, Xu X, Zhou X, Chen P, Liang H, Li X, Zhong W, Hao P. 2020. Molecular simulation of sars-cov-2 spike protein binding to pangolin ace2 or human ace2 natural variants reveals altered susceptibility to infection. J Gen Virol. 101(9):921-924.
Wu X, Zhu B, Zou S, Shi J. 2018. The association between ace2 gene polymorphism and the stroke recurrence in chinese population. J Stroke Cerebrovasc Dis. 27(10):2770-2780.
Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y. 2020. Prevalence of comorbidities and its effects in patients infected with sars-cov-2: A systematic review and meta-analysis. Int J Infect Dis. 94:91-95.
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579(7798):270-273.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Tegwinde Rebeca Compaore, Isidore Sawadogo, Lassina Traore, Abdoul Karim Ouattara, Serge Theophile Soubeiga, Sylvie Zida, Richard Kanfon, Vera Sanou, Issiaka Soulama, Dinanibe Kambire, Albert Yonli, Oumarou Ouedraogo, Charlemagne Dabire, Abdoul Nikiema, Abdou Zoure, Siaka Lougue, Tani Sagnaa, Dramane Zongo, Wendkuuni Florencia Djigma, Henri Ouedraogo, Jacques Simpore
This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. The journal allows readers to read, download, copy, distribute, print, search, link to the full texts or use the articles for any other lawful purpose.
The authors are the sole copyright owners of the published articles. The articles are distributed under the CC BY 4.0 license to the readers.
The readers are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — you may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.