Prophylactic Antihypertensive Effect of Extract of Simarouba glauca on Salt-Load Induced Hypertension in Normotensive Male Wistar Rat
DOI:
https://doi.org/10.47743/jemb-2024-204Keywords:
Medicinal Plants, Blood Pressure, Antihypertensive, Simarouba glaucaAbstract
Simarouba glauca has been reported to demonstrate a wide range of medicinal properties; including folklore management of hypertension disorder. The current study focused on the application of aqueous leaf extract of Simarouba glauca (AESG) as a potential prophylactic anti-hypertensive agent in male Wistar rats, following salt-load induced hypertension. A total of 15 experimental adult male Wistar rats weighing between 184 and 244 g were used for the study. The rats were allotted into five (5) groups of 25, 50, and 100 mgkg-1 body weight AESG; group that received 8 % NaCl for one week to induce hypertension; replaced with 0.9 % NaCl daily in drinking water for 4 weeks; the normotensive group, received food and water only ad libitum. Body weights and relevant hemodynamics were obtained weekly for four weeks, using the non-invasive (tail-cuff) MRBP system according to the method described by Bunag and Butterfield. Biochemical evaluation and histopathology investigation were conducted on blood plasma and relevant tissues respectively after 4 weeks according to previously established and reported methods; data were analyzed with GraphPad Prism, version 9 and presented as mean ± Standard Deviation. The results indicated that salt-load elicited significant weight loss; elevated hemodynamics; particularly, systolic and diastolic blood pressures; altered relevant biochemical indicators of hepatic and renal functions. Inversely, groups pre-treated with respective dose of AESG exponentially gained weight, significantly prevented alterations of hemodynamics and mitigated relevant biochemical indicators and pathological changes in relevant organs. Pre-treatment with AESG; particularly at 50 mgkg-1, remarkably demonstrated significant anti-hypertensive potential.
References
Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M, Wang L, Murgolo N, Graziano MP. 2004. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Sci. 303(5661):1201-4. doi: 10.1126/science.1093131. PMID: 14976318. DOI: https://doi.org/10.1126/science.1093131
Ayalogu EO, Ikewuchi CC, Onyeike EN and Ikewuchi JC. 2011. Effects of an Aqueous Leaf Extract of Sansevieria senegambica Baker on Plasma Biochemistry and Haematological Indices of Salt-Loaded Rats. South Afr J of Sci. 107(11/12): Art. #481, 5 pages. http:// dx.doi.org/10.4102/sajs. v107i11/12.481. DOI: https://doi.org/10.4102/sajs.v107i11/12.481
British Heart Foundation. 2015. Coronary Heart Disease Statistics. London: British Heart Foundation. [Accessed July 15, 2024]. www.bhf.org.uk. informationsupport/publications/statistics/cvd-stats-2015.
Blumenthal JA, Sherwood A, Smith PJ, Mabe S, Watkins L, Lin PH, Craighead LW, Babyak M, Tyson C, Young K, Ashworth M, Kraus W, Liao L, Hinderliter A. 2015. Lifestyle modification for resistant hypertension: the TRIUMPH randomized clinical trial. Am Heart J. 170:986-994.e5. doi: 10.1016/j.ahj.2015.08.006 DOI: https://doi.org/10.1016/j.ahj.2015.08.006
Bilanda, D. C., Tcheutchoua, Y. C., Djomeni Dzeufiet, P. D., Fokou, D. L. D., Fouda, Y. B., Dimo, T., & Kamtchouing, P. 2019. Antihypertensive Activity of Leersia hexandra Sw. (Poaceae) Aqueous Extract on Ethanol‐Induced Hypertension in Wistar Rat. Evid‐Based Compl. and Alt. Med, 2897867. DOI: https://doi.org/10.1155/2019/2897867
Bunag RD, Butterfield J. 1982. Tail-Cuff Blood Pressure Measurement Without External Preheating in Awake Rats. J of Hypertens. 4(6): 898-903. DOI: https://doi.org/10.1161/01.HYP.4.6.898
Bartels H, Bohmer M. 1972. Colorimetric method of Creatinine Determination. J of Clin Chem Acta. 37: 193. DOI: https://doi.org/10.1016/0009-8981(72)90432-9
Boh B, Berovic M, Zhang J, Zhi-Bin L. 2007. Ganoderma lucidum and its pharmaceutically active compounds. Biotechl Annl Rev. 13: 265-301. DOI: https://doi.org/10.1016/S1387-2656(07)13010-6
Campbell NRC, Paccot Burnens M, Whelton PK, Angell SY, Jaffe MG, Cohn J, Espinosa Brito A, Irazola V, Brettler JW, Roccella EJ, Maldonado Figueredo JI, Rosende A, Ordunez P. 2022. 2021 World Health Organization Guideline on Pharmacological Treatment of Hypertension: Policy Implications for the Region of the Americas. Lancet Reg Health Am. doi: 10.1016/j.lana.2022.100219. PMID: 35711684; PMCID: PMC9107389. DOI: https://doi.org/10.1016/j.lana.2022.100219
Casaschi A, Rubio BK, Maiyoh GK, Theriault AG. 2004. Inhibitory activity of diacylglycerol acyltransferase (DGAT) and microsomal triglyceride transfer protein (MTP) by the flavonoid, taxifolin, in HepG2 cells: potential role in the regulation of apolipoprotein B secretion. Atherosclerosis. 176(2):247-53. doi: 10.1016/j.atherosclerosis.2004.05.020. PMID: 15380446. DOI: https://doi.org/10.1016/j.atherosclerosis.2004.05.020
Casaschi A, Wang Q, Dang K, Richards A, Theriault A. 2002. Intestinal apolipoprotein B secretion is inhibited by the flavonoid quercetin: potential role of microsomal triglyceride transfer protein and diacylglycerol acyltransferase. Lipids. 37(7):647-52. doi: 10.1007/s11745-002-0945-8. PMID: 12216835. DOI: https://doi.org/10.1007/s11745-002-0945-8
Cicero AF, Rovati LC, Setnikar I. 2007. Eulipidemic effects of berberine administered alone or in combination with other natural cholesterol-lowering agents. A single-blind clinical investigation. Arzneimittelforschung. 57(1):26-30. doi: 10.1055/s-0031-1296582. PMID: 17341006. DOI: https://doi.org/10.1055/s-0031-1296582
Doumas BT, Watson WA, Biggs HG. 1971. Analyses of Amino Acids and Proteins. Clin Chem Acta. 31: 87. DOI: https://doi.org/10.1016/0009-8981(71)90365-2
Derosa G, D'Angelo A, Bonaventura A, Bianchi L, Romano D, Maffioli P. 2013. Effects of berberine on lipid profile in subjects with low cardiovascular risk. Expert Opin Biol Ther. 13(4):475-82. doi: 10.1517/14712598.2013.776037. PMID: 23441841. DOI: https://doi.org/10.1517/14712598.2013.776037
Englehardt A. 1970. Measurement of Alkaline Phosphatase. Aerzti Labor. 16: 42.
Feng D, Zou J, Zhang S, Li X, Lu M. 2017. Hypocholesterolemic Activity of Curcumin Is Mediated by Down-regulating the Expression of Niemann-Pick C1-like 1 in Hamsters. J Agric Food Chem. 65(2):276-280. doi: 10.1021/acs.jafc.6b04102. Epub 2017 Jan 3. PMID: 28000447. DOI: https://doi.org/10.1021/acs.jafc.6b04102
Feng D, Ohlsson L, Duan RD. 2010. Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression. Lipids Health Dis. 9:40. doi: 10.1186/1476-511X-9-40. PMID: 20403165; PMCID: PMC2865464. DOI: https://doi.org/10.1186/1476-511X-9-40
Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of Concentration of Low-density Lipoprotein Cholesterol in Plasma without the Use of Preparative Centrifuge. Clin Chem. 18: 499-502. DOI: https://doi.org/10.1093/clinchem/18.6.499
Gil-Ramírez A, Caz V, Smiderle FR, Martin-Hernandez R, Largo C, Tabernero M, Marín FR, Iacomini M, Reglero G, Soler-Rivas C. 2016. Water-Soluble Compounds from Lentinula edodes Influencing the HMG-CoA Reductase Activity and the Expression of Genes Involved in the Cholesterol Metabolism. J Agric Food Chem. 64(9):1910-20. doi: 10.1021/acs.jafc.5b05571. Epub 2016 Mar 1. PMID: 26877235. DOI: https://doi.org/10.1021/acs.jafc.5b05571
Gurr E. 1959. Methods for Analytical Histology and Histochemistry, 1st (ed.), Leonard Hill Publishers. p. 256.
Guyton AC. 1992. Kidneys and Fluids in Pressure Regulation. Small Volume but Large Pressure Changes. Hypertens. 19(Suppl 1): 12 – 18. DOI: https://doi.org/10.1161/01.HYP.19.1_Suppl.I2
Guyton AC. 1990. Long-term Arterial Pressure Control: An Analysis from Animal Experiment and Computer and Graphic Models. Am J of Physiol. 259(2): R865 – R877. DOI: https://doi.org/10.1152/ajpregu.1990.259.5.R865
Guo CP, Wei Z, Huang F, Qin M, Li X, Wang YM, Wang Q, Wang JZ, Liu R, Zhang B, Li HL, Wang XC. 2017. High salt induced hypertension leads to cognitive defect. Oncotarget. 27;8(56):95780-95790. doi: 10.18632/oncotarget.21326. PMID: 29221166; PMCID: PMC5707060. DOI: https://doi.org/10.18632/oncotarget.21326
Gurupriya S, Cathrine L, Ramesh J. 2017. Qualitative and Quantitative Phytochemical Analysis of Simarouba glauca Leaf Extract. Intenl. J. for Res in Appl Sci & Eng Technol. 5(11): 475-479. DOI: https://doi.org/10.22214/ijraset.2017.11074
Hu HJ, Luo XG, Dong QQ, Mu A, Shi GL, Wang QT, Chen XY, Zhou H, Zhang TC, Pan LW. 2016. Ethanol extract of Zhongtian hawthorn lowers serum cholesterol in mice by inhibiting transcription of 3-hydroxy-3-methylglutaryl-CoA reductase via nuclear factor-kappa B signal pathway. Exp Biol Med (Maywood). 241(6):667-74. doi: 10.1177/1535370215627032. PMID: 26825354; PMCID: PMC4950330. DOI: https://doi.org/10.1177/1535370215627032
Iida H, Kurita N, Takahashi S, Sasaki S, Nishiwaki H, Omae K, Yajima N, Fukuma S, Hasegawa T, Fukuhara S; Sukagawa Study Group. 2019. Salt intake and body weight correlate with higher blood pressure in the very elderly population: The Sukagawa study. J Clin Hypertens (Greenwich). 21(7):942-949. doi: 10.1111/jch.13593. Epub 2019 Jun 26. PMID: 31243900; PMCID: PMC8030338. DOI: https://doi.org/10.1111/jch.13593
Ikewuchi JC. 2013. Moderation of hematological and plasma biochemical indices of sub-chronic salt-loaded rats, by an aqueous extract of the leaves of Acalypha wilkesiana 'Godseffiana' Muell Arg (Euphorbiaceae). Asian Pac J Trop Med. 6(1):37-42. doi: 10.1016/S1995-7645(12)60197-7. PMID: 23317883. DOI: https://doi.org/10.1016/S1995-7645(12)60197-7
Jacobs NJ, VanDenmark PJ. 1960. Colorimetric Method for Determination of Triglycerides. Arc of Biochem and Biophys. 88: 250-255. DOI: https://doi.org/10.1016/0003-9861(60)90230-7
Ji X, Shi S, Liu B, Shan M, Tang D, Zhang W, Zhang Y, Zhang L, Zhang H, Lu C, Wang Y. 2019. Bioactive compounds from herbal medicines to manage dyslipidemia. Biomed Pharmacother. 118:109338. doi: 10.1016/j.biopha.2019.109338. PMID: 31545238. DOI: https://doi.org/10.1016/j.biopha.2019.109338
Jendrassik L, Grof P. 1938. Vereinfache, Photometrische Methoden. Zur Bestimmung des Blutbilis Biochem. 297: 81-89.
Joshi S, Joshi S. 2002. Oil Tree- Laxmitaru glauca University of Agricultural sciences, Bangalore and Indian Council of Agricultural Research, New Delhi, India. P 86.
Kurowska EM, Manthey JA, Casaschi A, Theriault AG. 2004. Modulation of HepG2 cell net apolipoprotein B secretion by the citrus polymethoxyflavone, tangeretin. Lipids. 39(2):143-51. doi: 10.1007/s11745-004-1212-8. PMID: 15134141. DOI: https://doi.org/10.1007/s11745-004-1212-8
Landazuri P, Chamorro NL, Cortes BR. 2017. Medicinal Plants Used in the Management Hypertension. J of Analyt. and Pharm Res. 5(2): 00134. DOI: https://doi.org/10.15406/japlr.2017.05.00134
Lifton RP, Gharavi AG, Geller DS. 2001. Molecular Mechanisms of Human Hypertension. Cell. 104: 545 – 556. DOI: https://doi.org/10.1016/S0092-8674(01)00241-0
Lin Y, Vermeer MA, Trautwein EA. 2011. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters. Evid Based Complement Alternat Med. 801272. doi: 10.1093/ecam/nep007. Epub 2010 Oct 19. PMID: 19228775; PMCID: PMC3139965. DOI: https://doi.org/10.1093/ecam/nep007
Lovibond K, Jowett S, Barton P, Caulfield M, Heneghan C, Hobbs FD, Hodgkinson J, Mant J, Martin U, Williams B, Wonderling D, McManus RJ. 2011. Cost-effectiveness of Options for the Diagnosis of High Blood Pressure in Primary Care: A Modelling Study. Lancet. 378(9798):1219-30. doi: 10.1016/S0140-6736(11)61184-7. PMID: 21868086. DOI: https://doi.org/10.1016/S0140-6736(11)61184-7
Lorbeer R, Bayerl C, Auweter S, Rospleszcz S, Lieb W, Meisinger C, Heier M, Peters A, Bamberg F, Hetterich H. 2017. Association between MRI-derived hepatic fat fraction and blood pressure in participants without history of cardiovascular disease. J Hypertens. 35(4):737-744. doi: 10.1097/HJH.0000000000001245. PMID: 28253218. DOI: https://doi.org/10.1097/HJH.0000000000001245
Maruna RFL. 1958. Colorimetric Determination of Sodium in Human Serum and Plasma. Clin Chem Acta. 2: 581. DOI: https://doi.org/10.1016/0009-8981(57)90064-5
Manville RW, van der Horst J, Redford KE, Katz BB, Jepps TA, Abbott GW. 2019. KCNQ5 activation is a unifying molecular mechanism shared by genetically and culturally diverse botanical hypotensive folk medicines. Proc. Natl. Acad. Sci. 116(42):21236-21245. doi: 10.1073/pnas.1907511116. PMID: 31570602; PMCID: PMC6800379. DOI: https://doi.org/10.1073/pnas.1907511116
National Clinical Guideline Centre (UK). 2011. Hypertension: The Clinical Management of Primary Hypertension in Adults: Update of Clinical Guidelines 18 and 34. London Royal College of Physicians (UK); PMID: 22855971
Nordestgaard BG, Varbo A. 2014.Triglycerides and Cardiovascular Disease. Lancet. 384: 626-635. DOI: https://doi.org/10.1016/S0140-6736(14)61177-6
Qian LY, Tu JF, Ding YH, Pang J, Che XD, Zou H, Huang DS. 2016. Association of blood pressure level with nonalcoholic fatty liver disease in nonhypertensive population: Normal is not the new normal. Med. (Baltimore). 95(29):e4293. doi: 10.1097/MD.0000000000004293. PMID: 27442673; PMCID: PMC 5265790. DOI: https://doi.org/10.1097/MD.0000000000004293
Oliveira MS, Fernandes MZLCM, Mineiro ALBB, Santos RFD, Viana GEN, Coelho JM, Ribeiro SM, Cunha APGP, Costa JF and Fernades RM. 2016. Toxicity Effects of Ethanol Extract of Simarouba Versicolor on Reproductive Parameters in Female Wistar Rats. Afr J of Biotechnol. 15(8): 221-235. DOI: https://doi.org/10.5897/AJB2014.14358
Organisation for Economic Co-operation and Development.Guidance document on acute oral toxicity testing. OECD Environment, Health and Safety Publications, Series on Testing and Assessment 29 2010; (Online) Available. (Accessed July 8, 2024).
Osagie-Eweka SDE., Orhue NEJ, Ekhaguosa DO. 2016. Comparative Phytochemical Analyses and in-vitro Antioxidant Activity of Aqueous and Ethanol Extracts of Simarouba glauca (Paradise Tree). Eur J of Med Plants. 13(3): 1-11. DOI: https://doi.org/10.9734/EJMP/2016/24736
Onyema-iloh1 O.B, Meludu SE, Iloh EO, Dioka CE, Obi-Ezeani C.N. 2018. Effects of Methanolic Extract of Vernonia amygdalina on Electrolytes and Renal Biomarkers in NaCl-Induced Hypertensive Male Wistar Rats. J of Pharm Res Intl. 23(1): 1-7. DOI: https://doi.org/10.9734/JPRI/2018/41908
Osagie-Eweka SDE, Orhue NEJ, Amaechina FC, Omogbai EKI, Moke EG. 2023. Preliminary Investigative Study on the Blood Pressure-Lowering Potential of Aqueous Leaf Extract of Simarouba glauca (AESG) on Normotensive Adult Wistar Rats. Biol, Med & Natl Prods Chem. 12(1): 1-4. DOI: https://doi.org/10.14421/biomedich.2023.121.1-4
Osagie-Eweka SDE, Orhue NJ, Omogbai EKI. 2021. Effect of Aqueous Leaf Extract of Simarouba glauca DC (Simaroubaceae) on Lipoprotein homeostasis and Oxidative Stress Biomarkers. Pharm and Tox of Natl Med. 1(1): 20-29. DOI: https://doi.org/10.52406/ptnm.v1i1.12
Patil MS, Gaikwad DK. 2011. A Critical Review on Medicinally Important Oil Yielding Plant Laxmitaru (Simarouba glauca DC). J of Pharm Sci and Res. 3(4): 1195-1213.
Park C, Wang G, Durthaler JM, Fang J. 2017. Cost-effectiveness Analyses of Antihypertensive Medicines: A Systematic Review. Am J Prev Med. 53(6S2): S131-S142. doi: 10.1016/j.amepre.. PMID: 29153114; PMCID: PMC5836308. DOI: https://doi.org/10.1016/j.amepre.2017.06.020
Patti AM, Al-Rasadi K, Giglio RV, Nikolic D, Mannina C, Castellino G, Chianetta R, Banach M, Cicero AFG, Lippi G, Montalto G, Rizzo M, Toth PP. 2018. Natural Approaches in Metabolic Syndrome Management. Arch. Med. Sci. 14 (2): 422–441. DOI: https://doi.org/10.5114/aoms.2017.68717
Reitman S, Frankel S. 1957. A colorimetric Method for The Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Am J of Clin Pathol. 28(1): 56-63. DOI: https://doi.org/10.1093/ajcp/28.1.56
Rout PK, Rao YR, Jena KS, Sahoo D, Ali S. 2014. Safety evaluation of Simarouba glauca seed fat. J Food Sci Technol. 51(7):1349-55. doi: 10.1007/s13197-012-0636-9. Epub 2012 Feb 16. PMID: 24966429; PMCID: PMC4062687 DOI: https://doi.org/10.1007/s13197-012-0636-9
Roeschlau P, Bernt E, Gruber JW. 1974. Enzymatic Procedure for Cholesterol Determination. J Clin Chem and Clin Biochem. 12: 403.
Rodriguez-Iturbe E, Romero F, Johnson RJ. 2007. Pathophysiological Mechanism of Salt-Dependent Hypertension. Amer. J. of Kid. Dis. 50: 655-672. DOI: https://doi.org/10.1053/j.ajkd.2007.05.025
Simchon S, Manager WM, Brown TW. 1991. Dual Hemodynamic Mechanism for Salt-Induced Hypertension in Dahl Salt-Sensitive Rats. J of Hyptens. 17(6): 1063-1071. DOI: https://doi.org/10.1161/01.HYP.17.6.1063
Salazar JH. 2014. Overview of Urea and Creatinine. Lab. Med. 45(1): e19-e20. DOI: https://doi.org/10.1309/LM920SBNZPJRJGUT
Technical Data Report for Simarouba (Simarouba amara). 2002; Sage Press, Inc. p. 54.
Teitz NW. 1987. Fundamentals of Clinical Chemistry 3rd (ed). Philadelphia. W B Saunders. p. 391.
Tietz NW. 1995. Clinical Guide to Laboratory Tests. 3rd ed. WB Saunders Company. p. 972.
Tietz NW, Pruden EL, Siggaard-Andersen O. 1986. Electrolytes, Blood Gas and Acid Base-Balance In: Clinical Chemistry. Teitz NW (ed.). Saunders, Philadelphia. p. 1188.
Wang Y, Yi X, Ghanam K, Zhang S, Zhao T, Zhu X. 2014. Berberine decreases cholesterol levels in rats through multiple mechanisms, including inhibition of cholesterol absorption. Metabolism. 2014 Sep;63(9):1167-77. doi: 10.1016/j.metabol. Epub 2014 Jun 4. PMID: 25002181. DOI: https://doi.org/10.1016/j.metabol.2014.05.013
Weatherburn MW. 1967. Urease-Berthelot Colorimetric Method. J of Analyt Chem. 39: 971 DOI: https://doi.org/10.1021/ac60252a045
Weisshaar HD, Gossrau E, Faderl B. 1975. Normal Ranges of Alpha-HBDH, LDH, AP and LAP as Measured Substrate Optimated Test Charges. Medizinische Welt. 26: 387-393.
Windsor L. 1994. Tissue processing, in: Laboratory Histopathology, A Complete Reference, Vol. 1, Churchill Livingstone, E. Wood (ed.), New York; p. 1- 42.
World Health Assembly, 30. (1977). Promotion and development of training and research in traditional medicine. World Health Organization. https://iris.who.int/handle/10665/93212. (Accessed 10th July, 2024).
Wilcox LJ, Borradaile NM, de Dreu LE, Huff MW. 2001. Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. J Lipid Res. 42(5):725-34. PMID: 11352979. DOI: https://doi.org/10.1016/S0022-2275(20)31634-5
Yang C, Yu C, Wu F, Wu Y, Feng J, Yan L, Han L, Ren J, Nie, L and Zhou, R. 2018. Vasodilatory Effects of Aloperine in Rat Aorta and its Possible Mechanisms. Clin J of Physl. 61(5): 293-301. DOI: https://doi.org/10.4077/CJP.2018.BAH609
Zhao YC, Zhao GJ, Chen Z, She ZG, Cai J, Li H. 2020. Nonalcoholic Fatty Liver Disease: An Emerging Driver of Hypertension. Hypertens; 75: 275-284. doi: 10.1161/hypertensionaha.119.13419). DOI: https://doi.org/10.1161/HYPERTENSIONAHA.119.13419
Downloads
Published
How to Cite
License
Copyright (c) 2024 SAMMY DAVIES OSAGIE EWEKA, Professor
This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. The journal allows readers to read, download, copy, distribute, print, search, link to the full texts or use the articles for any other lawful purpose.
The authors are the sole copyright owners of the published articles. The articles are distributed under the CC BY 4.0 license to the readers.
The readers are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — you may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.