ESTIMATION OF THE EFFECTS OF CHITOSAN-IRON NANOCOMPOSITES DEVELOPED BY DIFFERENT PROCESSES ON RH. GRACILIS CNMN-Y-30 YEAST

Authors

  • Beşliu Alina Institute of Microbiology and Biotechnology

Keywords:

Keywords: yeasts, chitosan-iron nanocomposites, Rhodotorula gracilis, viability, biomass production

Abstract

Abstract. The paper provides information on the estimation of the effects of iron chitosan nanocomposites, elaborated by different procedures on pigmented yeast Rh. gracilis CNMN-Y-30. It was found that the initial amount of chitosan, the concentration of Fe3O4 nanoparticles and the volume of nanocomposite used for growing yeasts are the main factors that influence the efficiency of chitosan-iron nanocomposites. Microbiological indices adequately reflect the effects of chitosan-iron nanocomposites in the process of evaluating the action of nanocomposites obtained by different processes on the representative yeast Rh. gracilis CNMN-Y-30 and it is recommended to test the degree of influence of the nanocomposite. This information can be used by specialists in the food industry, microbiology, medicine, cosmetology, environmental protection, etc., where nanocomposites have applications.

References

1. Aguilar-Uscanga, B., Francois, J. (2003): A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Letters in Applied Microbiology, 37, 268-274.
2. Blaney, l. (2007): Magnetite (Fe3O4): Properties, Synthesis, and Applications. Lehigh Preserve, 15, 33-81.
3. Bui, V.K.H., Park, D., Lee, Y. C. (2017): Chitosan Combined with ZnO, TiO2 and Ag Nanoparticles for Antimicrobial Wound Healing Applications: A Mini Review of the Research Trends. Polymers, 9, 21, 1-24.
4. Dias, A. M. G. C., Hussain, A., Marcos, A. S., Roque, A. C. A. (2011): A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnology Advances, 1, 29, 142–155.
5. Finotelli, P.V., Da Silva, D., Sola-Penna, M., Rossi, A.M., Farina, M, andrade L.R., Takeuchi, A.Y., Rocha-Leão, M. H. (2010): Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin. Colloids Surf B Biointerfaces. 1, 8, 206-211.
6. Gutierrez, A.M., Dziubla, T.D., Hilt, J.Z. (2017): Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Environ Health., 1, 32, 111–117.
7. Hong-Zhi, L., Qiang, W., Yuan-Yuan, L., Fang, F. (2009): Statistical optimization of culture media and conditions for production of mannan by S. Cerevisiae. Biotechnology and Bioprocess Engineering, 14, 5, 577-583.
8. Huang ,Y.K., Keller, A.A. (2015): EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment. Water Res., 80, 1, 159–168.
9. Kevin, A., Janes, M.P.F., Marazuela, A., Fabra, A. Alonso, M.J. (2011): Chitosan nanoparticles as delivery systems for doxorubicin. Journal of Controlled Release. 73, 255-267.
10. Khatri, K., Goyal, A.K., Gupta, P.N., Mishra, N., Vyas, S.P. (2008): Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis. International Journal of Pharmacy, 1-2, 354, 235-41.
11. Mohammadi-Samani, S., Miri, R., Salmanpour, M., Khalighian, N., Sotoudeh, S., Erfani, N. (2013): Preparation and assessment of chitosan-coated superparamagnetic Fe3O4 nanoparticles for controlled delivery of methotrexate. Res Pharm Sci, 1, 8, 25–33.
12. Otero-Gonzalez, L., Garcia-Saucedo, C., Field, G., Sierra-Alvarez, R. (2013): Toxicity of TiO2, ZrO2, Fe0, Fe2O3 and Mn2O3 nanoparticles to the yeast, Saccharomyces cerevisiae. Chemosphere, 93, 1201-1206.
13. Puja K., Cynthia O., Boon H., Gyeong H. (2015): Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials, 5, 1163-1180.
14. Sarlo, K., Blackburn, K.L., Clark, E.D., Grothaus, J., Chaney, J., Neu, S., Flood, J., Abbott, D., Bohne, C., Casey, K. (2009): Tissue distribution of 20 nm, 100 nm and 1000 nm fluorescent polystyrene latex nanospheres following acute systemic or acute and repeat airway exposure in the rat. Toxicology, 263, 117–26.
15. Shahzeidi, I Z.S., Amiri, G. (2015): Antibacterial activity of Fe3O4 nanoparticles. In: Bio-Inorg. Hybrid Nanomaterials, 4, 3, 135-140.
16. Silva, V., Andrade, M. P. C., Silva, A. Bustamante, D., Valladares, L. L. S., Aguiar, A.J. (2013): Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. In: Journal of Magnetism and Magnetic Materials, 343, 138–143.
17. Sonaje, K., Kun, J. L., Tseng, M.T., Shiaw, P.W., Fang, Y., Yuan, C., Chia, W. (2011): Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins. Biomaterials, 33, 32, 8712-21.
18. Tan, M.L., Choong, P.F., Dass, C.R. (2009): Review: doxorubicin delivery systems based on chitosan for cancer therapy. Pharm Pharmacology, 2, 61, 131-42.
19. Tang, S.C., Lo, I.M. (2013): Magnetic nanoparticles: Essential factors for sustaianble environmental applications. Water Research, 8, 47, 2613–2632.
20. Usatîi A., Beșliu A., Chirița E. (2016): Caractere fenotipice şi compoziţia biochimică a tulpinii de levuri pigmentate Rhodotorula gracilis CNMN-Y-30. Conferința Tehnico-Ștințiifică a Colaboratorilor, Doctoranzilor și Studenților, 26 noiembrie 2015 a Univ. Tehn. A Moldovei, 2, 31-35.
21. Usatîi, A., Chiselița, N., Bejenaru, L., Beșliu, A., Efremova, N., Tofan, E. (2017): The action of TiO2, ZnO, Fe3O4 nanoparticles on Saccharomyces and Rhodotorula yeast strains in function of the concentration and dimensions. Analele Științifice ale Universității „Alexandru Ioan Cuza”, Secțiunea Genetică și Biologie Moleculară, 18, 2, 65-
22. Vikele, L., Laka, M., Sable, I., Rozenberga, L., Grinfelds, U., Zoldners, J., Passas, R., Mauret, E. (2017): Effect of chitosan on properties of paper for packaging. Cellulose Chemistry and Technology. 1-2, 51, 67-73.
23. Wang, Y., Y$, C.X., Yan, X.P. ( 2017): Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging. Nanoscale, 9, 9049–9055.
24. Zheng, A., Hui-Xue, L., Lan, Y., Meng, M. (2011): Comprehensive studies on the interactions between chitosan nanoparticles and some live cells. Journal of Nanoparticle Research, 10, 13, 4765-4776.
25. Zlotski, S.V., Uglov, V.V. ( 2017): Facile Sol-gel Synthesis of Metaloxide Nanoparticles in a Cellulose Paper Template. Nanomed Nanotechnology, 8, 1-3.
26. Концевая, И.И. Микробиология. (2011): Практическое пособие для студентов специальности Биология (научнопедагогическая деятельность). Гомель: УО ГГУ им. Ф. Скорины, 126.

Downloads

Published

2021-01-05

How to Cite

Alina, B. (2021). ESTIMATION OF THE EFFECTS OF CHITOSAN-IRON NANOCOMPOSITES DEVELOPED BY DIFFERENT PROCESSES ON RH. GRACILIS CNMN-Y-30 YEAST. Journal of Experimental and Molecular Biology, 21(2), 35–39. Retrieved from http://www.jemb.bio.uaic.ro/index.php/jemb/article/view/37

Issue

Section

Articles