FINISHING THE JOB - UTILITY OF LONG-READ SEQUENCING USING THE MINION FOR BACTERIAL GENOMICS

  • Amada El-Sabeh Universitatea Alexandru Ioan Cuza Iasi
Keywords: bacterial genomes; third-generation-sequencing; Oxford Nanopore Technologies MinION; hybrid assembly

Abstract

Sequencing technologies have evolved dramatically since the first two bacterial genomes were published. Currently, due to second generation sequencing, millions of bacterial genomic sequences exist, although a significantly smaller amount represent completely assembled genomes. Third generation sequencing allows the analysis of single molecules, with read-lengths that cover highly complex repetitive regions previously inaccessible by short-read sequencing. However, long-read sequencing is known for producing errors which make long-read-only genome assemblies unreliable or complex if high accuracy is important for further applications. Here, Oxford Nanopore Technology’s MinION, the first handheld nanopore sequencing device, is evaluated in comparison with competing sequencing platforms. The MinION’s applications, potential and limitations are reviewed, focusing on its utility for bacterial genome de novo or hybrid assembly.  

References

Balloux, F., Brønstad Brynildsrud, O., van Dorp, L., Shaw, L. P., Chen, H., Harris, K. A., … Eldholm, V. (2018, December 1). From theory to practice: translating whole-genome sequencing (WGS) into the clinic. Trends in Microbiology, Vol. 26, pp. 1035–1048. Elsevier. https://doi.org/10.1016/j.tim.2018.08.004

Bolisetty, M. T., Rajadinakaran, G., and Graveley, B. R. (2015). Determining exon connectivity in complex mRNAs by nanopore sequencing. Genome Biology, 16(1), 1–12. https://doi.org/10.1186/s13059-015-0777-z

Bush, S. J., Foster, D., Eyre, D. W., Clark, E. L., De Maio, N., Shaw, L. P., … Walker, A. S. (2020). Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism–calling pipelines. GigaScience, 9(2), 1–21. https://doi.org/10.1093/GIGASCIENCE/GIAA007

Byrne, A., Beaudin, A. E., Olsen, H. E., Jain, M., Cole, C., Palmer, T., … Vollmers, C. (2017). Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nature Communications, 8(1), 1–11. https://doi.org/10.1038/ncomms16027

Castro-Wallace, S. L., Chiu, C. Y., John, K. K., Stahl, S. E., Rubins, K. H., McIntyre, A. B. R., … Burton, A. S. (2017). Nanopore DNA sequencing and genome assembly on the International Space Station. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-18364-0

Cherf, G. M., Lieberman, K. R., Rashid, H., Lam, C. E., Karplus, K., and Akeson, M. (2012). Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nature Biotechnology, 30(4), 344–348. https://doi.org/10.1038/nbt.2147

Collins, F. S., Morgan, M., and Patrinos, A. (2003). The Human Genome Project: Lessons from large-scale biology. Science, Vol. 300, pp. 286–290. Science. https://doi.org/10.1126/science.1084564

Conlan, S., Thomas, P. J., Deming, C., Park, M., Lau, A. F., Dekker, J. P., … Segre, J. A. (2014). Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Science Translational Medicine, 6(254). https://doi.org/10.1126/scitranslmed.3009845

Cozzuto, L., Liu, H., Pryszcz, L. P., Pulido, T. H., Delgado-Tejedor, A., Ponomarenko, J., and Novoa, E. M. (2020). MasterOfPores: A workflow for the analysis of oxford nanopore direct RNA sequencing datasets. Frontiers in Genetics, 11. https://doi.org/10.3389/fgene.2020.00211

David, M., Dursi, L. J., Yao, D., Boutros, P. C., and Simpson, J. T. (2017). Nanocall: An open source basecaller for Oxford Nanopore sequencing data. Bioinformatics, 33(1), 49–55. https://doi.org/10.1093/bioinformatics/btw569

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., … Turner, S. (2009). Real-time DNA sequencing from single polymerase molecules. Science, 323(5910), 133–138. https://doi.org/10.1126/science.1162986

Feng, Y., Zhang, Y., Ying, C., Wang, D., and Du, C. (2015, February 1). Nanopore-based fourth-generation DNA sequencing technology. Genomics, Proteomics and Bioinformatics, Vol. 13, pp. 4–16. Elsevier. https://doi.org/10.1016/j.gpb.2015.01.009

Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., … Venter, J. C. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223), 496–512. https://doi.org/10.1126/science.7542800

Fraser, C. M., Gocayne, J. D., White, O., Adams, M. D., Clayton, R. A., Fleischmann, R. D., … Venter, J. C. (1995). The minimal gene complement of Mycoplasma genitalium. Science, 270(5235), 397–403. https://doi.org/10.1126/science.270.5235.397

Garalde, D. R., Snell, E. A., Jachimowicz, D., Sipos, B., Lloyd, J. H., Bruce, M., … Turner, D. J. (2018). Highly parallel direct RNA sequencing on an array of nanopores. Nature Methods 2018 15:3, 15(3), 201–206. https://doi.org/10.1038/nmeth.4577

Goldstein, S., Beka, L., Graf, J., and Klassen, J. L. (2019). Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing. BMC Genomics, 20(1), 1–17. https://doi.org/10.1186/s12864-018-5381-7

Goodwin, S., Gurtowski, J., Ethe-Sayers, S., Deshpande, P., Schatz, M. C., and McCombie, W. R. (2015). Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Research, 25(11), 1750–1756. https://doi.org/10.1101/gr.191395.115

Goodwin, S., McPherson, J. D., and McCombie, W. R. (2016). Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, Vol. 17, pp. 333–351. Nature Publishing Group. https://doi.org/10.1038/nrg.2016.49

Gorrie, C. L., Mirc Eta, M., Wick, R. R., Edwards, D. J., Thomson, N. R., Strugnell, R. A., … Holt, K. E. (2017). Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clinical Infectious Diseases, 65(2), 208–215. https://doi.org/10.1093/cid/cix270

Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G., A, G., V, S., … G, T. (2013). QUAST: quality assessment tool for genome assemblies. 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086

Heather, J. M., and Chain, B. (2016). The sequence of sequencers: The history of sequencing DNA. Genomics, Vol. 107, pp. 1–8. Elsevier. https://doi.org/10.1016/j.ygeno.2015.11.003

Holt, K. E., Hamidian, M., Kenyon, J. J., Wynn, M. T., Hawkey, J., Pickard, D., and Hall, R. M. (2016). Genome sequence of Acinetobacter baumannii strain A1, an early example of antibioticresistant global clone 1. Genome Announcements, 3(2). https://doi.org/10.1128/genomeA.00032-15

Hunt, M., Newbold, C., Berriman, M., and Otto, T. D. (2014). A comprehensive evaluation of assembly scaffolding tools. Genome Biology 2014 15:3, 15(3), 1–15. https://doi.org/10.1186/GB-2014-15-3-R42

Ip, C. L. C., Loose, M., Tyson, J. R., de Cesare, M., Brown, B. L., Jain, M., … Olsen, H. E. (2015). MinION Analysis and Reference Consortium: Phase 1 data release and analysis. F1000Research, 4. https://doi.org/10.12688/f1000research.7201.1

Istace, B., Friedrich, A., D’Agata, L., Faye, S., Payen, E., Beluche, O., … Aury, J. M. (2017). De novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer. GigaScience, 6(2). https://doi.org/10.1093/gigascience/giw018

Jain, M., Koren, S., Miga, K. H., Quick, J., Rand, A. C., Sasani, T. A., … Loose, M. (2018). Nanopore sequencing and assembly of a human genome with ultra-long reads. Nature Biotechnology 2018 36:4, 36(4), 338–345. https://doi.org/10.1038/nbt.4060

Jain, M., Olsen, H. E., Paten, B., and Akeson, M. (2016). The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biology, 17(1), 1–11. https://doi.org/10.1186/s13059-016-1103-0

Karlsson, E., Lärkeryd, A., Sjödin, A., Forsman, M., and Stenberg, P. (2015). Scaffolding of a bacterial genome using MinION nanopore sequencing. Scientific Reports 2015 5:1, 5(1), 1–8. https://doi.org/10.1038/srep11996

Koren, S., Schatz, M. C., Walenz, B. P., Martin, J., Howard, J. T., Ganapathy, G., … Phillippy, A. M. (2012). Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature Biotechnology 2012 30:7, 30(7), 693–700. https://doi.org/10.1038/nbt.2280

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M. (2017). Canu: Scalable and accurate long-read assembly via adaptive κ-mer weighting and repeat separation. Genome Research, 27(5), 722–736. https://doi.org/10.1101/gr.215087.116

Krause, M., Niazi, A. M., Labun, K., Torres Cleuren, Y. N., Müller, F. S., and Valen, E. (2019). TailFindR: Alignment-free poly(A) length measurement for Oxford Nanopore RNA and DNA sequencing. RNA, 25(10), 1229–1241. https://doi.org/10.1261/rna.071332.119

Križanović, K., Echchiki, A., Roux, J., and Šikić, M. (2018). Evaluation of tools for long read RNA-seq splice-aware alignment. Bioinformatics, 34(5), 748–754. https://doi.org/10.1093/bioinformatics/btx668

Laehnemann, D., Borkhardt, A., and McHardy, A. C. (2016). Denoising DNA deep sequencing data-high-throughput sequencing errors and their correction. Briefings in Bioinformatics, 17(1), 154–179. https://doi.org/10.1093/bib/bbv029

Land, M., Hauser, L., Jun, S. R., Nookaew, I., Leuze, M. R., Ahn, T. H., … Ussery, D. W. (2015, February 27). Insights from 20 years of bacterial genome sequencing. Functional and Integrative Genomics, Vol. 15, pp. 141–161. Springer. https://doi.org/10.1007/s10142-015-0433-4

Land, M., Hyatt, D., Jun, S. R., Kora, G. H., Hauser, L. J., Lukjancenko, O., and Ussery, D. W. (2014). Quality scores for 32,000 genomes. Standards in Genomic Sciences, 9(1), 1–10. https://doi.org/10.1186/1944-3277-9-20

Lemon, J. K., Khil, P. P., Frank, K. M., and Dekker, J. P. (2017). Rapid nanopore sequencing of plasmids and resistance gene detection in clinical isolates. Journal of Clinical Microbiology, 55(12), 3530–3543. https://doi.org/10.1128/JCM.01069-17

Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., … Law, M. (2012). Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology, Vol. 2012. J Biomed Biotechnol. https://doi.org/10.1155/2012/251364

Loman, N. J., Misra, R. V., Dallman, T. J., Constantinidou, C., Gharbia, S. E., Wain, J., and Pallen, M. J. (2012). Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotechnology, 30(5), 434–439. https://doi.org/10.1038/nbt.2198

Loman, N. J., Quick, J., and Simpson, J. T. (2015). A complete bacterial genome assembled de novo using only nanopore sequencing data. Nature Methods, 12(8), 733–735. https://doi.org/10.1038/nmeth.3444

Lu, H., Giordano, F., and Ning, Z. (2016). Oxford Nanopore MinION Sequencing and Genome Assembly. Genomics, Proteomics and Bioinformatics, Vol. 14, pp. 265–279. Elsevier. https://doi.org/10.1016/j.gpb.2016.05.004

Madoui, M. A., Engelen, S., Cruaud, C., Belser, C., Bertrand, L., Alberti, A., … Aury, J. M. (2015). Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics, 16(1), 1–11. https://doi.org/10.1186/s12864-015-1519-z

Magi, A., Giusti, B., and Tattini, L. (2017). Characterization of MinION nanopore data for resequencing analyses. Briefings in Bioinformatics, 18(6), 940–953. https://doi.org/10.1093/bib/bbw077

Magi, A., Semeraro, R., Mingrino, A., Giusti, B., and D’Aurizio, R. (2017). Nanopore sequencing data analysis: State of the art, applications and challenges. Briefings in Bioinformatics, 19(6), 1256–1272. https://doi.org/10.1093/bib/bbx062

Mahmoud, M., Gobet, N., Cruz-Dávalos, D. I., Mounier, N., Dessimoz, C., and Sedlazeck, F. J. (2019). Structural variant calling: The long and the short of it. Genome Biology, Vol. 20, pp. 1–14. BioMed Central. https://doi.org/10.1186/s13059-019-1828-7

Mavromatis, K., Land, M. L., Brettin, T. S., Quest, D. J., Copeland, A., Clum, A., … Kyrpides, N. C. (2012). The Fast Changing Landscape of Sequencing Technologies and Their Impact on Microbial Genome Assemblies and Annotation. PLoS ONE, 7(12), e48837. https://doi.org/10.1371/journal.pone.0048837

Neal-McKinney, J. M., Liu, K. C., Lock, C. M., Wu, W. H., and Hu, J. (2021). Comparison of MiSeq, MinION, and hybrid genome sequencing for analysis of Campylobacter jejuni. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-84956-6

Ozsolak, F., and Milos, P. M. (2011). RNA sequencing: Advances, challenges and opportunities. Nature Reviews Genetics, Vol. 12, pp. 87–98. Nature Publishing Group. https://doi.org/10.1038/nrg2934

Paden, C. R., Tao, Y., Queen, K., Zhang, J., Li, Y., Uehara, A., and Tong, S. (2020). Rapid, Sensitive, Full-Genome Sequencing of Severe Acute Respiratory Syndrome Coronavirus 2. Emerging Infectious Diseases, 26(10), 2401–2405. https://doi.org/10.3201/eid2610.201800

Pitt, M. E., Nguyen, S. H., Duarte, T. P. S., Teng, H., Blaskovich, M. A. T., Cooper, M. A., and Coin, L. J. M. (2020). Evaluating the genome and resistome of extensively drug-resistant Klebsiella pneumoniae using native DNA and RNA Nanopore sequencing. GigaScience, 9(2), 1–14. https://doi.org/10.1093/gigascience/giaA002

Quick, J., Grubaugh, N. D., Pullan, S. T., Claro, I. M., Smith, A. D., Gangavarapu, K., … Loman, N. J. (2017). Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nature Protocols, 12(6), 1261–1266. https://doi.org/10.1038/nprot.2017.066

Quick, J., Loman, N. J., Duraffour, S., Simpson, J. T., Severi, E., Cowley, L., … Carroll, M. W. (2016). Real-time, portable genome sequencing for Ebola surveillance. Nature, 530(7589), 228–232. https://doi.org/10.1038/nature16996

Rand, A. C., Jain, M., Eizenga, J. M., Musselman-Brown, A., Olsen, H. E., Akeson, M., and Paten, B. (2017). Mapping DNA methylation with high-throughput nanopore sequencing. Nature Methods, 14(4), 411–413. https://doi.org/10.1038/nmeth.4189

Ross, M. G., Russ, C., Costello, M., Hollinger, A., Lennon, N. J., Hegarty, R., … Jaffe, D. B. (2013). Characterizing and measuring bias in sequence data. Genome Biology, 14(5), 1–20. https://doi.org/10.1186/gb-2013-14-5-r51

Salmela, L., and Rivals, E. (2014). LoRDEC: Accurate and efficient long read error correction. Bioinformatics, 30(24), 3506–3514. https://doi.org/10.1093/bioinformatics/btu538

Schmidt, M. H.-W., Vogel, A., Denton, A. K., Istace, B., Wormit, A., van de Geest, H., … Usadel, B. (2017). De novo assembly of a new Solanum pennellii accession using nanopore sequencing. Plant Cell, 29(10), 2336–2348. https://doi.org/10.1105/tpc.17.00521

Schreiber, J., Wescoe, Z. L., Abu-Shumays, R., Vivian, J. T., Baatar, B., Karplus, K., and Akeson, M. (2013). Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 18910–18915. https://doi.org/10.1073/pnas.1310615110

Schwarze, K., Buchanan, J., Fermont, J. M., Dreau, H., Tilley, M. W., Taylor, J. M., … Wordsworth, S. (2020). The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom. Genetics in Medicine, 22(1), 85–94. https://doi.org/10.1038/s41436-019-0618-7

Sessegolo, C., Cruaud, C., Da Silva, C., Cologne, A., Dubarry, M., Derrien, T., … Aury, J. M. (2019). Transcriptome profiling of mouse samples using nanopore sequencing of cDNA and RNA molecules. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-51470-9

Simpson, J. T., Workman, R. E., Zuzarte, P. C., David, M., Dursi, L. J., and Timp, W. (2017). Detecting DNA cytosine methylation using nanopore sequencing. Nature Methods, 14(4), 407–410. https://doi.org/10.1038/nmeth.4184

Smith, A. M., Jain, M., Mulroney, L., Garalde, D. R., and Akeson, M. (2019). Reading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencing. PLoS ONE, 14(5). https://doi.org/10.1371/journal.pone.0216709

Stancu, C. M., Van Roosmalen, M. J., Renkens, I., Nieboer, M. M., Middelkamp, S., De Ligt, J., … Kloosterman, W. P. (2017). Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-01343-4

Todd, S. M., Settlage, R. E., Lahmers, K. K., and Slade, D. J. (2018). Fusobacterium genomics using MinION and Illumina sequencing enables genome completion and correction. MSphere, 3(4). https://doi.org/10.1128/msphere.00269-18

Tyler, A. D., Mataseje, L., Urfano, C. J., Schmidt, L., Antonation, K. S., Mulvey, M. R., and Corbett, C. R. (2018). Evaluation of Oxford Nanopore’s MinION sequencing device for microbial whole genome sequencing applications. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-29334-5

Wescoe, Z. L., Schreiber, J., and Akeson, M. (2014). Nanopores discriminate among five C5-cytosine variants in DNA. Journal of the American Chemical Society, 136(47), 16582–16587. https://doi.org/10.1021/ja508527b

Wick, R. R., and Holt, K. E. (2021). Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Research, 8, 2138. https://doi.org/10.12688/f1000research.21782.4

Wick, R. R., Judd, L. M., Gorrie, C. L., and Holt, K. E. (2017a). Completing bacterial genome assemblies with multiplex MinION sequencing. Microbial Genomics, 3(10), e000132. https://doi.org/10.1099/MGEN.0.000132

Wick, R. R., Judd, L. M., Gorrie, C. L., and Holt, K. E. (2017b). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Computational Biology, 13(6), e1005595. https://doi.org/10.1371/journal.pcbi.1005595

Wick, R. R., Judd, L. M., and Holt, K. E. (2019). Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biology, 20(1), 1–10. https://doi.org/10.1186/s13059-019-1727-y

Workman, R. E., Tang, A. D., Tang, P. S., Jain, M., Tyson, J. R., Razaghi, R., … Timp, W. (2019). Nanopore native RNA sequencing of a human poly(A) transcriptome. Nature Methods, 16(12), 1297–1305. https://doi.org/10.1038/s41592-019-0617-2

Yang, F., Yang, J., Zhang, X., Chen, L., Jiang, Y., Yan, Y., … Jin, Q. (2005). Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Research, 33(19), 6445–6458. https://doi.org/10.1093/nar/gki954

Zagordi, O., Klein, R., Däumer, M., and Beerenwinkel, N. (2010). Error correction of next-generation sequencing data and reliable estimation of HIV quasispecies. Nucleic Acids Research, 38(21), 7400–7409. https://doi.org/10.1093/nar/gkq655

Published
2021-08-31
How to Cite
El-Sabeh, A. (2021). FINISHING THE JOB - UTILITY OF LONG-READ SEQUENCING USING THE MINION FOR BACTERIAL GENOMICS. Journal of Experimental and Molecular Biology, 22(1), 27-38. https://doi.org/10.47743/jemb-2021-57
Section
Reviews