Targeting the Ether-à-go-go ion channels in cancer therapy: current knowledge and future perspectives


  • Daniel Şterbuleac
  • Dumitru Cojocaru


cancer therapy, Eeag ion channels, tumor cells


Members of the Ether-à-go-go (Eag) group of potassium channels, including the human Ether-à-go-go (hEag) and the human Ether-à-go-go-related gene (hERG) ion channels, have been shown to play important roles in cancer pathogenesis and to regulate many aspects of tumour development. It was shown that they are frequently overexpressed or ectopically expressed in different human cancers, which, combined with their cell surface expression, led to different attempts at finding their therapeutic potential as promising cancer therapy targets. This review summarizes the current knowledge drawn from the results of independent studies performed to identify sought-after alternatives of targeting these ion channels in cancer therapy.


Arcangeli, A., Becchetti, A., (2015): Novel Perspectives in Cancer Therapy: Targeting Ion Channels. Drug Resist. Updat., 21–22(July), 11-19
Sharan K. B., Brown, A. D., Cox, P. J., Omoto, K., Owen, R. M. Pryde, D. C., Sidders, B., Skerratt, S. E., Stevens, E. B., Storer, R. I., Swain, N. A., (2013): Ion Channels as Therapeutic Targets: A Drug Discovery Perspective. J. Med. Chem., 56(3), 593-624
Becchetti, A., Munaron, L. Arcangeli, A., (2013): The Role of Ion Channels and Transporters in Cell Proliferation and Cancer. Front. Physiol. 4, 312-314
Camacho, J., (2006): Ether À Go-Go Potassium Channels and Cancer. Cancer Lett., 233(1), 1-9
García-Ferreiro, R. E., Kerschensteiner, D., Major, F., Monje, F., Stühmer, W., Pardo, L. A., (2004): Mechanism of Block of hEag1 K + Channels by Imipramine and Astemizole. J. Gen. Physiol., 124(4), 301-17
García-Quiroz, J., García-Becerra, R., Santos-Martínez, N. Barrera, D., Ordaz-Rosado, D., Avila, E., Halhali, A., Villanueva, O., Ibarra-Sánchez, M. J., Esparza-López, J., Gamboa-Domínguez, A., Camacho, J., Larrea F., Díaz, L., (2014): In Vivo Dual Targeting of the Oncogenic Ether-À-Go-Go-1 Potassium Channel by Calcitriol and Astemizole Results in Enhanced Antineoplastic Effects in Breast Tumors. BMC Cancer, 14(1), 745-754
Gasparoli, L., D’Amico, M., Masselli, M., Pillozzi, S., Caves, R., Khuwaileh, R., Tiedke, W., Mugridge, K., Pratesi, A., Mitcheson, J. S., Basso, G., Becchetti A., Arcangeli, A., (2015): New Pyrimido-Indole Compound CD-160130 Preferentially Inhibits the KV11.1B Isoform and Produces Antileukemic Effects without Cardiotoxicity. Mol. Pharm., 87(2), 183-196
Gavrilov, K., Saltzman, W. M., (2012): Therapeutic siRNA: Principles, Challenges, and Strategies. Yale J. Biol. Med., 85(2), 187-200
Gómez-Varela, D., Zwick-Wallasch, W., Knötgen, H., Sánchez, A., Hettmann, T., Ossipov, D., Weseloh, R., Contreras-Jurado, C., Rothe, M., Stühmer W., Pardo, L.A., (2007): Monoclonal Antibody Blockade of the Human Eag1 Potassium Channel Function Exerts Antitumor Activity. Cancer Res., 67(15), 7343-7549
Hartung, F., Stühmer, W., Pardo., L. A., (2011): Tumor Cell-Selective Apoptosis Induction through Targeting of KV10.1 via Bifunctional TRAIL Antibody. Mol. Cancer, 10(1), 109-123
Hemmerlein, B., Weseloh, R. M., de Queiroz, F. M., Knötgen, H., Sánchez, A., Rubio, M. E., Martin, S., Schliephacke, T., Jenke, M., Radzun, H-J., Stühmer W., Pardo L. A., (2006): Overexpression of Eag1 Potassium Channels in Clinical Tumours. Mol. Cancer, 5, 41-53
Huang, X., Jan, L. Y., (2014): Targeting Potassium Channels in Cancer. J. Cell Biol., 206(2), 151-162
Perry, M., Sanguinetti, M., Mitcheson, J., (2010): Revealing the structural basis of action of hERG potassium channel activators and blockers. J. Physiol., 588(Pt 17), 3157–3167
Raschi, E., Vasina, V., Poluzzi E., De Ponti, F., (2008): The hERG K+ Channel: Target and Antitarget Strategies in Drug Development. Pharmacol. Res., 57(3), 181-195
Șterbuleac, D., Maniu, C. L., (2016): An Antiarrhythmic Agent as a Promising Lead Compound for Targeting the hEAG1 Ion Channel in Cancer Therapy: Insights from Molecular Dynamics Simulations. Chem. Biol. Drug Des., 88(5), 683-689
Șterbuleac, D., Maniu, C. L., (2018): Computer Simulations Reveal a Novel Blocking Mode of the hERG Ion Channel by the Antiarrhythmic Agent Clofilium. Mol. Inf., in press
Sun, H., Li, M., (2013): Antibody Therapeutics Targeting Ion Channels: Are We There Yet?. Acta Pharmacol. Sin. 34(2), 199-204
Tang, X., Shao, J., Qin, X., (2016): Crystal Structure of the PAS Domain of the hEAG Potassium Channel. Acta Crystallogr. F Struct. Biol. Commun., 72(Pt 8), 578-585
Weber, C., de Queiroz, F. M., Downie, B. R., Suckow, A., Stühmer, W., Pardo, L. A., (2006): Silencing the Activity and Proliferative Properties of the Human EagI Potassium Channel by RNA Interference. J. Biol. Chem. 281(19), 13030-13037
Wilkinson, T. C. I., Gardener, M. J., A. Williams. W. A., (2015): Discovery of Functional Antibodies Targeting Ion Channels. J. Biomol. Screen., 20(4), 454-467
Wold, E. D., Smider, V. V., Felding, B. H., (2016): Antibody Therapeutics in Oncology. Immunotherapy (Los Angel.), 2(1) : 108 - 116
Wu, X., Chen, Z., Zeng,W., Zhong, Y., Liu, Q., Wu, J., (2015). Silencing of Eag1 Gene Inhibits Osteosarcoma Proliferation and Migration by Targeting STAT3-VEGF Pathway. BioMed Res. Int., 2015(December), 1-10
Zeng, W., Liu, Q., Chen, Z., Wu, X., Zhong, Y., Wu, J., (2016): Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-κB Pathway. J. Cancer, 7(6), 746-757




How to Cite

Şterbuleac, D., & Cojocaru, D. (2018). Targeting the Ether-à-go-go ion channels in cancer therapy: current knowledge and future perspectives. Journal of Experimental and Molecular Biology, 19(1), 1–6. Retrieved from