Acquired Antibiotic Resistance

Authors

  • Honceriu Iasmina Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Iasi

DOI:

https://doi.org/10.47743/jemb-2022-66

Keywords:

horizontal gene transfer, multidrug-resistant bacteria, plasmid, transposon, integron

Abstract

Antibiotics are chemicals used to control bacterial infections, produced by microorganisms (fungi, some bacteria) or obtained synthetically or semi-synthetically. The discovery of antibiotics has revolutionized the medical system, reducing morbidity and mortality rates and improving quality and length of life. Antibiotics affect essential processes in the bacterial cell, but bacteria have adapted to their action by developing antibiotic resistance. Though multidrug-resistant bacteria have emerged, they threaten the healthcare system globally by making it difficult to find effective antibiotics. This review focuses on the mechanisms leading to acquired antibiotic resistance, namely mutations and horizontal gene transfer, and on mobile genetic elements associated with antibiotic resistance (plasmids, transposons, and integrons) that disperse antibiotic resistance genes between bacteria.

References

Akrami, F., Rajabnia, M., Pournajaf, A. (2019): Resistance integrons; A mini review. Caspian J Intern Med, 10(4):370-376
Aminov, R. I., Mackie, R. I. (2007): Evolution and ecology of antibiotic resistance genes. FEMS Microbiol. Lett., 271, 147-161
Aminov, R. I. (2010): A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in Microbiology, DOI: 10.3389/fmicb.2010.00134
Bassett, E. J., Keith, M. S., Armelagos, G. J., Martin, D. L., Villanueva, A. R. (1980): Tetracycline-labeled human bone from ancient Sudanese Nubia (A.D. 350). Science, 209, 1532-1534.
Blahová, J., Králiková, K., Krčméry, V., Ježek, P. (2000): Low-frequency transduction of imipenem resistance and high-frequency transduction of ceftazidime and aztreonam resistance by the bacteriophage AP-151 isolated from a Pseudomonas aeruginosa strain. J. Chemother., 12: 482-486.
Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., Piddock, L. J. V. (2015): Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13: 42-51.
Bradford, P. A. (2001): Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev, 14(4):933-51
Casadewall, B., Courvalin, P. (1999): Characterization of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM4339. J. Bacteriol., 181, 3644-3648
Chain, E., Florey, H. W., Gardner, A. D., Heatley, N. G. et al. (2005): The classic: penicillin as a chemotherapeutic agent. 1940. Clin. Orthop. Relat. Res., 439, 23-26.
Conlan, S., Thomas, P. J., Deming, C., Park, M. et al. (2014): Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci. Transl. Med., 6: 254ra126.
Dalhoff, A. (2012): Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip. Perspect. Infect. Dis., 2012: 976273.
Davies, J. (1994): Inactivation of antibiotics and the dissemination of resistance genes. Science, 264(5157):375-82.
de Greeff, S. C., Schoffelen, A. F., Verduin, C. M. (2020): NethMap 2020: Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in the Netherlandsin 2019 / MARAN 2020: Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands in 2019. National Institute for Public Health and the Environment, DOI: 10.21945/RIVM-2020-0065
Dehoux, P., Marvaud, J. C., Abouelleil, A., Earl, A. M. et al. (2016): Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants. BMC Genomics, 17: 819
Deylam Salehi, M.., Ferdosi-Shahandashti, E., Yahyapour, Y. et al. (2017): Integron-mediated antibiotic resistance in acinetobacter baumannii isolated from intensive care unit patients. Babol, North of Iran. Biomed Res Int, 2017: 7157923.
Erdmann, S., Tschitschko, B., Zhong, L., Raftery, M. J., Cavicchioli, R. (2017): A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-free cells. Nat. Microbiol, 2, 1446-1455.
European Centre for Disease Prevention and Control/European Medicines Agency Joint Working Group (ECDC/EMEA) (2009): The Bacterial Challenge: Time to React. www.ecdc.europa.eu/en/publications/Publications/0909_TER_The_ Bacterial_Challenge_Time_to_React. pdf
Fleming, A. (1929): On antibacterial action of culture of Penicillium, with special reference to their use in isolation of B. influenzae. Br. J. Exp. Pathol., 10, 226-236.
Garau, G., Di Guilmi, A. M., Hall, B. G. (2005): Structure-based phylogeny of the metallo-beta-lactamases. Antimicrob. Agents Chemother, 49, 2778-2784.
Gardete, S., Tomasz, A. (2014): Mechanisms of vancomycin resistance in Staphylococcus aureus. J. Clin. Invest., 124: 2836-2840.
Gillings, M. R. (2014): Integrons: past, present, and future. Microbiol Mol Biol Rev, 78(2): 257-77.
Girlich, D., Bonnin, R. A., Dortet, L., Naas, T. (2020): Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. Front. Microbiol., https://doi.org/10.3389/fmicb.2020.00256
Gorrie, C. L., Mirceta, M., Wick, R. R., Judd, L. M. et al. (2018): Antimicrobial-resistant Klebsiella pneumoniae carriage and infection in specialized geriatric care wards linked to acquisition in the referring hospital. Clin. Infect. Dis., 67: 161-170.
Hooper, D. C. (2000): Mechanisms of action and resistance of older and newer fluoroquinolones. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 31 Suppl 2, S24-S28
Hooper, D. C. (2001): Emerging mechanisms of fluoroquinolone resistance. Emerg. Infect. Dis., 7: 337-341.
Hutchings, M. I., Truman, A. W., Wilkinson, B. (2019): Antibiotics: past, present and future. Current Opinion in Microbiology, 51, pp. 72-80
Jevons, M. P., Coe, A. W., Parker, M. T. (1963): Methicillin resistance in staphylococci. Lancet (London, England), 1(7287), 904-907.
Johnston, C., Martin, B., Fichant, G., Polard, P., Claverys, J.-P. (2014): Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol., 12: 181-196.
Kohler, V., Keller, W., Grohmann, E. (2019): Regulation of Gram-positive conjugation. Front. Microbiol., 10, 1134.
Krahn, T., Wibberg, D., Maus, I., Winkler, A. et al. (2016): Intraspecies transfer of the chromosomal Acinetobacter baumannii blaNDM-1 carbapenemase gene. Antimicrob. Agents Chemother,. 60: 3032-3040.
Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., Bagaria, J. et al. (2010): Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis., 10, 597-602.
Lambertsen, L., Rubio-Cosials, A., Patil, K. R., Barabas, O. (2017): Conjugative transposition of the vancomycin resistance carrying Tn1549: Enzymatic requirements and target site preferences. Molecular Microbiology, 107(5).
Launay, A., Ballard, S. A., Johnson, P. D. R., Grayson, L., Lambert, T. (2006): Transfer of Vancomycin resistance transposon Tn1549 from Clostridium symbiosum to Enterococcus spp. in the gut of gnotobiotic mice. Antimicrob Agents Chemother, 50: 1054-1062
Lerminiaux, N.A., Cameron, A. D. S. (2018): Horizontal transfer of antibiotic resistance genes in clinical environments. Canadian Journal of Microbiology, https://doi.org/10.1139/cjm-2018-0275
Lewis, T., Loman, N. J., Bingle, L., Jumaa, P. et al. (2010): High-throughput whole-genome sequencing to dissect the epidemiology of Acinetobacter baumannii isolates from a hospital outbreak. J. Hosp. Infect., 75: 37-41.
Liu, Y., Tong, Z., Shi, J., Jia, Y. et al. (2020): Correlation between Exogenous Compounds and the Horizontal Transfer of Plasmid-Borne Antibiotic Resistance Genes. Microorganisms, 8(8), 1211
Ludden, C., Reuter, S., Judge, K., Gouliouris et al. (2017): Sharing of carbapenemase-encoding plasmids between Enterobacteriaceae in UK sewage uncovered by MinION sequencing. Microb. Genom., 3(7): e000114.
Ma, C., Yang, X., Lewis, P. J. (2016): Bacterial transcription as a target for antibacterial drug development. Microbiol Mol Biol Rev,. 80:139-160.
Manson, J. M., Hancock, L. E., Gilmore, M. S. (2010): Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island, capsule, antimicrobial resistance, and other traits. Proc Natl Acad Sci USA, 107:12269-12274
Martin, J., Phan, H. T. T., Findlay, J., Stoesser, N. et al. (2017). Covert dissemination of carbapenemase-producing Klebsiella pneumoniae (KPC) in a successfully controlled outbreak: long- and short-read whole-genome sequencing demonstrate multiple genetic modes of transmission. J. Antimicrob. Chemother., 72: 3025-3034.
Marvaud, J. C., Mory, F., Lambert, T. (2011): Clostridium clostridioforme and Atopobium minutum clinical isolates with vanB-type resistance in France. J Clin Microbiol, 49:3436-3438
Mašlaňová, I., Stříbná, S., Doškař, J., Pantůček, R. (2016): Efficient plasmid transduction to Staphylococcus aureus strains insensitive to the lytic action of transducing phage. FEMS Microbiol. Lett., 363: fnw211.
Matilla, M. A., Salmond, G. P. C. (2014): Bacteriophage ϕMAM1, a Viunalikevirus, is a broad-host-range, high-efficiency generalized transducer that infects environmental and clinical isolates of the Enterobacterial genera Serratia and Kluyvera. Appl. Environ. Microbiol,. 80, 6446-6457.
Mulvey, M. R., Haraoui, L.-P., Longtin, Y. (2016): Multiple variants of Klebsiella pneumoniae producing carbapenemase in one patient. N. Engl. J. Med., 375: 2408-2410.
Munita, J. M., Arias, C. A. (2021): Mechanisms of Antibiotic Resistance. Microbiology Spectrum, DOI: https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
Nadell, C. D., Xavier, J. B., Foster, K. R. (2009): The sociobiology of biofilms. FEMS Microbiol. Rev., 33: 206-224.
Nandi, S., Maurer, J. J., Hofacre, C., Summers, A. O. (2004): Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc. Natl. Acad. Sci., 101: 7118-22.
Ochman, H., Lawrence, J. G., Groisman, E. A. (2000): Lateral gene transfer and the nature of bacterial innovation. Nature, 405: 299-304.
Ory, J., Bricheux, G., Togola, A., Bonnet, J. L. et al. (2016): Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent. Environ. Pollut., 214: 635-645.
Osei Sekyere, J., Amoako, D. G. (2017): Genomic and phenotypic characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae in Durban, South Africa. PLoS One, 12: e0178888.
Pagès, J. M., James, C. E., Winterhalter, M. (2008): The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol, 6:893-903.
Paterson, D. L., Bonomo, R. A. (2005): Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev., 18: 657-686.
Phan, H. T. T., Stoesser, N., Maciuca, I. E., Toma, F. et al. (2018): Illumina short-read and MinION long-read WGS to characterize the molecular epidemiology of an NDM-1 Serratia marcescens outbreak in Romania. J. Antimicrob. Chemother., 73: 672-679.
Pontes, M. H., Groisman, E. A. (2020): A Physiological Basis for Nonheritable Antibiotic Resistance. ASM Journal, 11:3
Prudhomme, M., Attaiech, L., Sanchez, G., Martin, B., Claverys, J.-P. (2006): Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science, 313: 89-92.
Quirós, P., Colomer-Lluch, M., Martínez-Castillo, A,; Miró, E. et al. (2014): Antibiotic resistance genes in the bacteriophage DNA fraction of human fecal samples. Antimicrob. Agents Chemother, 58, 606-609.
Rice, L. B., Carias, L. L., Susan, R., Hutton, R. A., Steven, M. (2010): Multiple copies of functional, Tet(M)-encoding Tn916-like elements in a clinical Enterococcus faecium isolate. Plasmid, 64: 150-155
Rolain, J. M., Fancello, L., Desnues, C., Raoult, D. (2011): Bacteriophages as vehicles of the resistome in cystic fibrosis. J. Antimicrob. Chemother, 66, 2444-2447.
Ruiz, J. (2003): Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. The Journal of antimicrobial chemotherapy, 51(5), 1109-1117
Sana, F., Mabrouka, S., Claudine, Q., Faouzi, S. A. et al. (2014): Prevalence and characterization of uropathogenic Escherichia coli harboring plasmid-mediated quinolone resistance in a Tunisian university hospital. Diagn. Microbiol. Infect. Dis,. 79: 247-251.
Schatz, A., Waksman, S. A. (1944): Effect of streptomycin and other antibiotic substances upon Mycobacterium tuberculosis and related organisms. Proc. Soc. Exp. Biol. Med., 57, 244-248
Seitz, P., Blokesch, M. (2013): Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria. FEMS Microbiol. Rev,. 37: 336-363.
Sobell, H. M. (1985): Actinomycin and DNA transcription.. Proc. Natl. Acad. Sci. U.S.A., 82, 5328-5331.
Soler, N., Forterre, P. (2020): Vesiduction: The fourth way of HGT. Environ. Microbiol, 22, 2457-2460.
Sturød, K., Salvadori, G., Junges, R., Petersen, F.C. (2018): Antibiotics alter the window of competence for natural transformation in streptococci. Mol. Oral Microbiol., 33, 378-387.
Szczepanowski, R., Bekel, T., Goesmann, A., Krause, L. et al. (2008): Insight into the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to antimicrobial drugs analysed by the 454-pyrosequencing technology. J. Biotechnol., 136: 54-64.
Tamminen, M., Virta, M., Fani, R., Fondi, M. (2012): Large-scale analysis of plasmid relationships through gene-sharing networks. Mol. Biol. Evol, 29, 1225-1240.
Traglia, G. M., Chua, K., Centrón, D., Tolmasky, M. E., Ramírez, M. S. (2014): Whole-genome sequence analysis of the naturally competent Acinetobacter baumannii clinical isolate A118. Genome Biol. Evol., 6: 2235-2239.
van Hoek, A. H., Mevius, D., Guerra, B., Mullany, P. et al. (2011): Acquired antibiotic resistance genes: an overview. Frontiers in microbiology, 2, 203.
Warnke, J., Ali, H. H. (2016): Graph mining for next generation sequencing: Leveraging the assembly graph for biological insights. BMC Genomics, 17(1):340
Wright, G. D. (1999): Aminoglycoside-modifying enzymes. Curr Opin Microbiol., 2(5):499-503.
Zeman, M., Mašlaňová, I., Indráková, A., Šiborová, M. et al. (2017): Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene. Sci. Rep,. 7: 46319.
Zhang, P.-Y., Xu, P.-P., Xia, Z.-J., Wang, J. et al. (2013): Combined treatment with the antibiotics kanamycin and streptomycin promotes the conjugation of Escherichia coli.. FEMS Microbiol. Lett., 348: 149-156.

Downloads

Published

2022-09-07

How to Cite

Iasmina, H. (2022). Acquired Antibiotic Resistance. Journal of Experimental and Molecular Biology, 23(1), 54–65. https://doi.org/10.47743/jemb-2022-66