TOXICOLOGICAL ASSESSMENT OF CARBON NANOMATERIALS ON LEMNA MINOR L.: INSIGHTS INTO PHYSIOLOGICAL AND BIOCHEMICAL ALTERATIONS

Authors

  • Stefan Mihaita Olaru UAIC, Faculty of Biology
  • Maria-Magdalena Zamfirache Alexandru Ioan Cuza University image/svg+xml

DOI:

https://doi.org/10.47743/jemb-2025-247

Keywords:

Lemna minor, carbon nanomaterials, oxidative stress, photosynthesis, aquatic ecotoxicology

Abstract

Synthetic carbon-based nanomaterials, such as multi-walled carbon nanotubes (MWCNTs), carboxyl-functionalized nanotubes (MWCNTs-COOH), and fullerene soot, are increasingly being utilised in practical industrial and agricultural applications. This reality raises concerns about their potential unfavourable ecotoxicological impact on aquatic ecosystems where they may accidentally end up. In this context, the present research aimed to evaluate several physiological and biochemical responses of plants belonging to the species Lemna minor L. when interacting with these types of nanomaterials, experimentally added at two concentrations (50 and 200 mg/L) to their culture medium over a 14-day cultivation period.

The results obtained demonstrated the appearance in the test plants of functional effects dependent on the dose and nature of the tested nanomaterial, reflected by significant changes in photosynthetic performance (decreases in the content of photo-assimilatory pigments and the efficiency of photosystem II), as well as by the activation of biochemical markers of oxidative stress (increases in the content of flavonoids and polyphenols, changes in POD and SOD activities). The functionalized nanotubes (MWCNTs-COOH) induced the most pronounced biochemical responses, while fullerene soot had more moderate effects, possibly due to its reduced bioavailability in the cultivation media.

The results highlight the sensitivity of Lemna minor to chemical stress generated by synthetic carbon-based nanomaterials present in the cultivation medium, thus confirming its usefulness as a model organism in ecotoxicological studies and emphasising the need for rigorous assessments regarding the potential impact of these nanomaterials on aquatic plants in natural ecosystems, to lay the groundwork for responsible ecological management strategies.

References

Artenie V, Ungureanu E, Negură AM. 2008. Metode de investigare a metabolismului glucidic şi lipidic – manual de lucrări practice. Editura PIM, Iași.

Behrendorff J, Vickers C, Chrysanthopoulos PhD P, Nielsen L. 2013. 2,2-Diphenyl-1-picrylhydrazyl as a screening tool for recombinant monoterpene biosynthesis. Microb Cell Factories. 12:76. doi:10.1186/1475-2859-12-76.

Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A. 2016. Phytoremediation potential of Lemna minor L. for heavy metals. Int J Phytoremediation. 18(1):25–32. doi:10.1080/15226514.2015.1058331.

Calabrese EJ, Agathokleous E. 2021. Accumulator plants and hormesis. Environ Pollut. 274:116526. doi:10.1016/j.envpol.2021.116526.

Chen M, Zhou S, Zhu Y, Sun Y, Zeng G, Yang C, Xu P, Yan M, Liu Z, Zhang W. 2018. Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present. Chemosphere. 206:255–264. doi:10.1016/j.chemosphere.2018.05.020.

Chen Q, Chen L, Nie X, Man H, Guo Z, Wang X, Tu J, Jin G, Ci L. 2020. Impacts of surface chemistry of functional carbon nanodots on the plant growth. Ecotoxicol Environ Saf. 206:111220. doi:10.1016/j.ecoenv.2020.111220.

Dietz K-J, Herth S. 2011. Plant nanotoxicology. Trends Plant Sci. 16(11):582–589. doi:10.1016/j.tplants.2011.08.003.

Fang S, Shen L, Zhang X. 2017. Chapter 9 - Application of Carbon Nanotubes in Lithium-Ion Batteries. In: Peng H, Li Q, Chen T, editors. Industrial Applications of Carbon Nanotubes. Boston: Elsevier. (Micro and Nano Technologies). p. 251–276. [accessed 2025 May 6]. https://www.sciencedirect.com/science/article/pii/B9780323414814000095.

Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 48(12):909–930. doi:10.1016/j.plaphy.2010.08.016.

Gohari G, Safai F, Panahirad S, Akbari A, Rasouli F, Dadpour MR, Fotopoulos V. 2020. Modified multiwall carbon nanotubes display either phytotoxic or growth promoting and stress protecting activity in Ocimum basilicum L. in a concentration-dependent manner. Chemosphere. 249:126171. doi:10.1016/j.chemosphere.2020.126171.

Herald TJ, Gadgil P, Tilley M. 2012. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J Sci Food Agric. 92(11):2326–2331. doi:10.1002/jsfa.5633.

Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, Vogel U, Wallin H. 2013. Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J. 7(1):154. doi:10.1186/1752-153X-7-154.

Jordan JT, Oates RP, Subbiah S, Payton PR, Singh KP, Shah SA, Green MJ, Klein DM, Cañas-Carrell JE. 2020. Carbon nanotubes affect early growth, flowering time and phytohormones in tomato. Chemosphere. 256:127042. doi:10.1016/j.chemosphere.2020.127042.

Lang J, Melnykova M, Catania M, Inglot A, Zyss A, Mikruta K, Firgolska D, Wieremiejczuk A, Książek I, Serda M, et al. 2019 July 7. A water-soluble [60]fullerene-derivative stimulates chlorophyll accumulation and has no toxic effect on Chlamydomonas reinhardtii. Acta Biochim Pol. doi:10.18388/abp.2019_2835. [accessed 2025 May 3]. https://www.frontierspartnerships.org/articles/10.18388/abp.2019_2835/pdf.

Lanthemann L, van Moorsel SJ. 2022. Species interactions in three Lemnaceae species growing along a gradient of zinc pollution. Ecol Evol. 12(2):e8646. doi:10.1002/ece3.8646.

Mathew S, Victório CP. 2022. Carbon Nanotubes Applications in Agriculture. In: Abraham J, Thomas S, Kalarikkal N, editors. Handbook of Carbon Nanotubes. Cham: Springer International Publishing. p. 1579–1593. [accessed 2025 May 6]. https://doi.org/10.1007/978-3-030-91346-5_35.

Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7(9):405–410. doi:10.1016/S1360-1385(02)02312-9.

de Morais MB, Barbosa-Neto AG, Willadino L, Ulisses C, Calsa Junior T. 2019. Salt Stress Induces Increase in Starch Accumulation in Duckweed (Lemna aequinoctialis, Lemnaceae): Biochemical and Physiological Aspects. J Plant Growth Regul. 38(2):683–700. doi:10.1007/s00344-018-9882-z.

Nasu Y, Kugimoto M. 1981. Lemna (duckweed) as an indicator of water pollution. I. The sensitivity ofLemna paucicostata to heavy metals. Arch Environ Contam Toxicol. 10(2):159–169. doi:10.1007/BF01055618.

Oecd. 2006. Test No. 221: Lemna sp. Growth Inhib Test Guidel Test Chem.:1–26.

Ozfidan-Konakci C, Alp FN, Arikan B, Balci M, Parmaksizoglu Z, Yildiztugay E, Cavusoglu H. 2022. The effects of fullerene on photosynthetic apparatus, chloroplast-encoded gene expression, and nitrogen assimilation in Zea mays under cobalt stress. Physiol Plant. 174(3):e13720. doi:10.1111/ppl.13720.

Patel DK, Kim H-B, Dutta SD, Ganguly K, Lim K-T. 2020. Carbon Nanotubes-Based Nanomaterials and Their Agricultural and Biotechnological Applications. Materials. 13(7):1679. doi:10.3390/ma13071679.

Pathan AK, Bond J, Gaskin RE. 2010. Sample preparation for SEM of plant surfaces. Mater Today. 12:32–43. doi:10.1016/S1369-7021(10)70143-7.

Ren L, Wang M-R, Wang Q-C. 2021. ROS-induced oxidative stress in plant cryopreservation: occurrence and alleviation. Planta. 254(6):124. doi:10.1007/s00425-021-03784-0.

Samadi S, Asgari Lajayer B, Moghiseh E, Rodríguez-Couto S. 2021. Effect of carbon nanomaterials on cell toxicity, biomass production, nutritional and active compound accumulation in plants. Environ Technol Innov. 21:101323. doi:10.1016/j.eti.2020.101323.

Sharma OP, Bhat TK. 2009. DPPH antioxidant assay revisited. Food Chem. 113(4):1202–1205. doi:10.1016/j.foodchem.2008.08.008.

Subotić A, Jevremović S, Milošević S, Trifunović-Momčilov M, Đurić M, Koruga Đ. 2022. Physiological Response, Oxidative Stress Assessment and Aquaporin Genes Expression of Cherry Tomato (Solanum lycopersicum L.) Exposed to Hyper-Harmonized Fullerene Water Complex. Plants. 11(21):2810. doi:10.3390/plants11212810.

Tan X, Lin C, Fugetsu B. 2009. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon. 47(15):3479–3487. doi:10.1016/j.carbon.2009.08.018.

Verneuil L, Silvestre J, Mouchet F, Flahaut E, Boutonnet J-C, Bourdiol F, Bortolamiol T, Baqué D, Gauthier L, Pinelli E. 2015. Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom Nitzschia palea : “A sticky story.” Nanotoxicology. 9(2):219–229. doi:10.3109/17435390.2014.918202.

Wellburn AR. 1994. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J Plant Physiol. 144(3):307–313. doi:10.1016/S0176-1617(11)81192-2.

Winterbourn CC, Hawkins RE, Brian M, Carrell RW. 1975. The estimation of red cell superoxide dismutase activity. J Lab Clin Med. 85(2):337–341.

Xu Z, Zhou G. 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot. 59(12):3317–3325. doi:10.1093/jxb/ern185.

Zhang H, Yue M, Zheng X, Xie C, Zhou H, Li L. 2017. Physiological Effects of Single- and Multi-Walled Carbon Nanotubes on Rice Seedlings. IEEE Trans Nanobioscience. 16(7):563–570. doi:10.1109/TNB.2017.2715359.

Zhao Q, Ma C, White JC, Dhankher OP, Zhang X, Zhang S, Xing B. 2017. Quantitative evaluation of multi-wall carbon nanotube uptake by terrestrial plants. Carbon. 114:661–670. doi:10.1016/j.carbon.2016.12.036.

Published

2025-09-09 — Updated on 2025-09-30

How to Cite

Olaru, S. M., & Zamfirache, M.-M. (2025). TOXICOLOGICAL ASSESSMENT OF CARBON NANOMATERIALS ON LEMNA MINOR L.: INSIGHTS INTO PHYSIOLOGICAL AND BIOCHEMICAL ALTERATIONS. Journal of Experimental and Molecular Biology, 26(3), 187–198. https://doi.org/10.47743/jemb-2025-247

Issue

Section

Articles

Categories